检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王珍珠 赵猛 任群言 肖旭 马力[1,2] WANG Zhenzhu;ZHAO Meng;REN Qunyan;XIAO Xu;MA Li(Institute of Acoustics Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China)
机构地区:[1]中国科学院声学研究所,北京100190 [2]中国科学院大学,北京100049
出 处:《应用声学》2023年第3期467-473,共7页Journal of Applied Acoustics
摘 要:复杂海洋环境中信道的传输特性、时空变化、频散效应等一定程度上制约了主动声呐目标方位估计的性能。该文引入卷积神经网络,提出了适用于主动声呐中目标方位的高精度估计方法。仿真声场环境为浅海负梯度,主动发射信号为具有多普勒不变性质的双曲调频信号,水平线列阵作为接收装置,目标按仿真路线运动。该文利用Kraken进行声场数据仿真,并对接收的信号在频域做均匀加权常规波束形成,进而进行卷积神经网络的模型训练和测试。数值仿真研究表明,该文所用方法可以有效估计目标波达方向,对信噪比具有一定的鲁棒性。The performance of active sonar target azimuth estimation is restricted to some extent by channel transmission characteristics,temporal and spatial variation and dispersion effect in complex ocean environment.In this paper,a high precision estimation method for target orientation in active sonar is proposed used convolutional neural network(CNN).The simulated acoustic field environment is shallow sea negative gradient,the active transmitting signal is hyperbolic frequency modulation signal with Doppler invariant property,the horizontal line array is the receiving device,and the target moves according to the simulated route.In this paper,Kraken is used for sound field data simulation,and the received signal is uniformly weighted conventional beamforming in the frequency domain,and then the model training and testing of CNN network is carried out.Numerical simulation results show that the proposed method can effectively estimate the target arrival direction and is robust to the signal-to-noise ratio.
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15