检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄利民 丁峰 彭洪林 彭宜生 Huang Limin;Ding Feng;Peng Honglin;Peng Yisheng(Yichang Three Gorges Dalaoling Nature Reserve Administration,Yichang,Hubei 443000,China;College of Computer and Information Technology,China Three Gorges University,Yichang,Hubei 443002,China)
机构地区:[1]宜昌三峡大老岭自然保护区管理局,湖北宜昌443000 [2]三峡大学计算机与信息学院,湖北宜昌443002
出 处:《绿色科技》2023年第7期165-168,172,共5页Journal of Green Science and Technology
摘 要:松材线虫病是一种松树的传染病,对森林具有极强的破坏性,近几年,深度学习技术广泛应用于森林病虫害的监测领域。利用深度学习技术对病树进行了监测,通过使用基于注意力机制的目标检测算法对无人机遥感影像下的松材线虫病树进行了检测,以实现对林区松材线虫病树的高效、智能化的识别。实验展示了基于空间注意力机制、通道注意力机制和混合注意力机制的目标检测算法对松材线虫病树的识别结果,并分析总结了基于不同注意力机制的目标检测算法在松材线虫病树识别应用上的差异。实验结果表明:基于混合注意力机制的目标检测算法在松材线虫病树影像上的检测效果最好,使用基于注意力机制的目标检测算法在大老岭自然保护区的无人机影像中,识别出了561棵松材线虫病树。Bursaphelenchus xylophilus disease is an infectious disease of Pinus trees,which is very destructive to forests.In recent years,deep learning technology has been widely used in the detection field of forest diseases and insect pests.In this paper,deep learning technology is used to monitor the diseased trees,and the target detection algorithm based on attention mechanism is used to detect the Bursaphelenchus xylophilus diseased trees in the remote sensing image of UAV and to realize the efficient and intelligent identification application of the Bursaphelenchus xylophilus diseased trees in the forest area.The experiment shows the identification results of Bursaphelenchus xylophilus diseased trees based on spatial attention,channel attention,and mixed attention mechanisms,and summarizes the differences in the application of Bursaphelenchus xylophilus tree identification based on different attention mechanisms.The experimental results show that the target detection algorithm based on the mixed attention mechanism has the best detection effect on the Bursaphelenchus xylophilus diseased tree image.1435 Bursaphelenchus xylophilus diseased trees were identified using the target detection algorithm based on the attention mechanism under the UAV image in the Dalaoling Nature Reserve.
关 键 词:松材线虫病 无人机遥感影像 混合注意力机制 目标检测 大老岭自然保护区
分 类 号:S763.7[农业科学—森林保护学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49