检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李智超 郝育新[1] LI Zhichao;HAO Yuxin(Mechanical Electrical Engineering School,Beijing Information Science and Technology University,Beijing 100192,P.R.China)
机构地区:[1]北京信息科技大学机电工程学院,北京100192
出 处:《应用数学和力学》2023年第5期525-534,共10页Applied Mathematics and Mechanics
基 金:国家自然科学基金项目(11872127)。
摘 要:悬臂L梁结构由于具有柔性大、可设计性强、空间利用充分,振动过程中变形方式多样等独特优势而受到了广泛的关注与研究.该文提出了一种基于微分求积法求解末端附加质量块的矩形等截面均质悬臂细长L梁的各阶固有频率和模态的方法.在双坐标系下,基于Euler-Bernoulli梁理论建立了悬臂L梁的动力学方程,然后通过选取Chebyshev多项式的根作为节点坐标、选取Lagrange插值基函数、求解各阶权系数、处理边界条件等步骤,最终利用求解矩阵广义特征值问题的方法求得结构各阶固有频率及模态.在边界条件的处理上,直接将边界条件施加于边界点上,通过对比研究验证了该文固有频率理论解的正确性.最后分析了末端质量、内外梁的长度比、宽度、厚度对各阶固有振动特性的影响.该方法可以进一步应用推广到相关结构振动的研究中.The L⁃shaped cantilever beam structure has many unique advantages such as large flexibility,strong designability,full utilization of space and various deformation modes during vibration,and is widely regarded and studied.A differential quadrature method was proposed to solve the natural frequencies and modes of rec⁃tangular⁃section homogeneous slender L⁃shaped cantilever beams with additional end masses.In the double co⁃ordinate systems,the dynamic equations for the L⁃shaped cantilever beam based on the Euler⁃Bernoulli beam theory were established.With selected roots of the Chebyshev polynomial as the node coordinates,the La⁃grange interpolation basis function was employed,the weight coefficients of each order were solved,and the boundary conditions were considered,to obtain the natural frequencies and modes of all orders of the structure through resolution of the generalized matrix eigenvalue problem.The theoretical solution of the natural frequen⁃cies was verified in comparison with the previous theoretical results and the finite element results.Finally,the effects of the end mass,the length ratio,the width and the thickness of the inner and outer beams on the natu⁃ral vibration characteristics of all orders were discussed.This method can be further applied to the study of re⁃lated structural vibrations.
分 类 号:O31[理学—一般力学与力学基础] O32[理学—力学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.14.81