显生宙长时间尺度碳循环演变的模拟:现状与展望  被引量:5

Simulating the long-term carbon cycle in the Phanerozoic:Current status and future developments

在线阅读下载全文

作  者:张莹刚 Benjamin J.W.Mills 何天辰 杨涛[2] 朱茂炎[1,4,5] Yinggang Zhang;Benjamin J.W.Mills;Tianchen He;Tao Yang;Maoyan Zhu(State Key Laboratory of Palaeobiology and Stratigraphy,Nanjing Institute of Geology and Palaeontology,Chinese Academy of Sciences,Nanjing 210008,China;State Key Laboratory of Mineral Deposits Research,Nanjing University,Nanjing 210046,China;School of Earth Environment,University of Leeds,Leeds LS29JT,UK;Center for Excellence in Life and Paleoenvironment,Chinese Academy of Sciences,Nanjing 210008,China;College of Earth and Planetary Sciences,University of Chinese Academy of Sciences,Beijing 100049,China)

机构地区:[1]中国科学院南京地质古生物研究所,现代古生物学和地层学国家重点实验室,南京210008 [2]南京大学内生金属矿床成矿机制研究国家重点实验室,南京210046 [3]School of Earth Environment,University of Leeds,Leeds LS29JT,UK [4]中国科学院生物演化与环境卓越创新中心,南京210008 [5]中国科学院大学地球与行星科学学院,北京100049

出  处:《科学通报》2023年第12期1580-1592,共13页Chinese Science Bulletin

基  金:中国科学院战略性先导科技专项(XDB26000000);国家自然科学基金委员会基础科学中心项目(41888101);国家自然科学基金(41921002)资助。

摘  要:长时间尺度碳循环演变控制了大气CO_(2)的含量.显生宙以来,大气CO_(2)含量的变化及其对地表气温的控制,是古气候地球化学研究的前沿领域.地球系统箱式模型被广泛用于揭示长时间尺度碳循环和古气候变化的过程与机制.以COPSE(Carbon-Oxygen-Phosphorus-Sulphur-Evolution)和GEOCARB模型为代表的早期长时间尺度碳循环模型,在应用于显生宙大气CO_(2)含量变化研究上成效显著,但因无法表达地球三维地表的影响,制约了其进一步发展.新发展的SCION(Spatial Continuous Integration)模型基于COPSE模型,结合了GEOCLIM模型中运用的FOAM(Fast Ocean-Atmosphere Model)气候模型数据集,实现了大陆风化的动态表达,进而更准确地表征了长时间尺度的碳循环演变.然而,最新版SCION模型模拟的大气CO_(2)含量变化,仍与大气CO_(2)的地质指标记录存在不一致之处.采用多箱式海洋替代单一箱式海洋,区分硅酸盐岩性对风化的影响,完善营养物质循环,优化构造古地理和陆地植物演化的表达等,有望提高对长时间尺度碳循环源汇体系的限定和显生宙大气CO_(2)模拟的准确性.Over geological timescales,Earth’s atmospheric CO_(2) concentration is determined by the long-term carbon cycle.Here the principal CO_(2) sources are tectonic degassing and the weathering of carbonate or organic-rich rocks,and the sinks are the deposition of carbonate minerals and organic carbon in sediments.The global carbon cycle has a self-regulation mechanism because the weathering of silicate rocks,which provides key elements for marine carbonate formation,is temperature dependent and can remove more carbon when Earth’s CO_(2) levels and temperature rise.Nevertheless,changes in carbon inputs and outputs can drive substantial variation in CO_(2) levels over geological time,and this has been the most important factor controlling the long-term variations in global average surface temperature over the Phanerozoic.Therefore,reconstructing the long-term carbon cycle and Phanerozoic changes in atmospheric CO_(2) levels is an important area of geochemical research.Earth system box models have traditionally been used to study the long-term carbon cycle and to understand what controls changes in CO_(2) concentration.Early box models,such as the GEOCARB and COPSE(Carbon-OxygenPhosphorus-Sulphur-Evolution)models,mathematically expressed the physical and chemical properties of the Earth’s surface in a dimensionless way,using a single box for the ocean or land surface and a single value for global temperature or rate of precipitation.These models succeeded in reconstructing some aspects of atmospheric CO_(2) variations during the Phanerozoic but were limited because they cannot represent Earth’s surface in 3D,so could not properly represent continental weathering processes.The GEOCLIM model improved on this method by using a large dataset of physical climate model simulations to approximate a 3D climate and land surface for a set of specific times in Earth’s history,which allowed it to evaluate weathering processes and simulate uplift-driven glaciation in the late Palaeozoic.A further step was made in the SCION(

关 键 词:大气CO_(2)含量 长时间尺度碳循环 显生宙 地球系统箱式模型 生物地球化学箱式模型 

分 类 号:P532[天文地球—古生物学与地层学] P59[天文地球—地质学] P534.4

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象