检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:侯明华 袁颖 杨丛铭 李云鹏 黄虎城[4] HOU Ming-hua;YUAN Ying;YANG Cong-ming;LI Yun-peng;HUANG Hu-cheng(School of Urban Geology and Engineering Hebei GEO University,Shijiazhuang 050031,China;Hebei Technology Innovation Center for Intelligent Development and Control of Underground Built Environment,Shijiazhuang 050031,China;School of Water Resources&Environment Hebei GEO University,Shijiazhuang 050031,China;Shanxi Institute of Geological Survey,Taiyuan 030006,China)
机构地区:[1]河北地质大学城市地质与工程学院,石家庄050031 [2]河北省地下人工环境智慧开发与管控技术创新中心,石家庄050031 [3]河北地质大学水资源与环境学院,石家庄050031 [4]山西省地质调查院,太原030006
出 处:《科学技术与工程》2023年第13期5470-5480,共11页Science Technology and Engineering
基 金:国家自然科学基金(41807231);河北省自然科学基金(D2019403182);河北地质大学科技创新团队项目(KJCXTD-2021-08)。
摘 要:地面沉降是一种常见的地质灾害,严重阻碍当地居民的生产生活,如何对地面沉降进行准确预测已经成为相关专家学者讨论的热点话题,但常规数学模型难以对地面沉降量做出准确预测。提出了麻雀搜索算法(sparrow search algorithm,SSA)优化Elman的地面沉降量预测方法,同时根据组合模型原理提出了SSA-Elman残差自校正(SSA-Elman residual self-correction,SSA-Elman-RSC)模型的策略,通过残差校正的方式降低神经网络预测误差,成功地将地面沉降量预测模型应用于山西省大同市潇河产业园,将预测结果与未进行残差修正的模型预测结果进行比较分析。结果表明,对于均方根误差(root mean squared error,RMSE)、平均绝对误差(mean absolute error,MAE)、均方误差(mean square error,MSE)3个指标,SSA-Elman-RSC拥有更高的精度。该模型的提出为山西地区地面沉降量预测提供了一种新方法,并且组合模型的建立提供了一种新思路。Land subsidence is a common geological disaster,which seriously hinders the production and life of local residents.How to accurately predict land subsidence has become a hot topic discussed by relevant experts and scholars.But the conventional mathematical model is difficult to predict the land subsidence accurately.The sparrow search algorithm(SSA)was proposed to optimize the Elman land subsidence prediction method.At the same time,according to the principle of combination model,the strategy of SSAElman residual self-correction(SSA-Elman-RSC)model was proposed.The prediction error of neural network was reduced by residual correction,and the land subsidence prediction model was successfully applied to Xiaohe Industrial Park in Datong City,Shanxi Province.The prediction results were compared with those of the model without residual correction.The results show that SSA-Elman-RSC has higher accuracy for root mean squared error(RMSE),mean absolute error(MAE)and mean square error(MRE).The proposed model provides a new method for the prediction of land subsidence in Shanxi Province and a new idea for the establishment of combined model.
关 键 词:Elman神经网络 麻雀搜索算法(SSA) 残差自校正(RSC) 地面沉降预测
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7