检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李成林 刘严松[1,3,4] 赖思翰 王地 何星慧 刘琦 何博宇 LI Cheng-lin;LIU Yan-song;LAI Si-han;WANG Di;HE Xing-hui;LIU Qi;HE Bo-yu(College of Earth Sciences,Chengdu University of Technology,Chengdu 610059,China;CECEP Construction Engineering Design Institute Limited,Chengdu 610059,China;Chengdu Center,China Geological Survey,Chengdu 610081,China;School of Earth Sciences and Resources,China University of Geosciences,Beijing 100083,China;Sichuan Sumhope Spatial Technology Co.,Ltd.,Chengdu 610094,China)
机构地区:[1]成都理工大学地球科学学院,成都610059 [2]中节能建设工程设计院有限公司,成都610059 [3]中国地质调查局成都地质调查中心,成都610081 [4]中国地质大学地球科学与资源学院,北京100083 [5]四川三合空间科技有限公司,成都610094
出 处:《科学技术与工程》2023年第13期5481-5492,共12页Science Technology and Engineering
基 金:四川省教育厅基金(18ZB0065);四川省自然资源厅基金(KJ2016-16);国家自然科学基金(41402159);中国地质调查局地调项目(DD20221697)。
摘 要:滑坡是中国频发的地质灾害,滑坡的易发性评价涉及多种影响因素,如何利用多影响因素进行精确、有效的滑坡易发性评价是滑坡减灾防灾工作的重点和前提。为探讨基于反向传播(back propagation,BP)神经网络模型的不同滑坡易发性评价方法的适用性,以川西蒲江县为研究区,通过实地调查与编录,筛选地质、地貌、环境等12类影响因子,分析各影响因子与滑坡的相关性,确定影响因子的权重大小,构建BP神经网络模型,完成因子权重法和栅格赋值法的滑坡易发性评价图编制和精度评价。结果显示:研究区筛选的12类滑坡影响因子不存在线性相关,坡度、地形湿度指数(topographic wetness index,TWI)和距道路距离对区内滑坡发育影响明显,利用滑坡影响因子构建的BP神经网络模型可对滑坡易发性进行有效的定量评价。综合现场调查与接收者操作特征(receiver operating characteristic,ROC)曲线精度分析,结果表明:基于BP神经网络模型的栅格赋值法和因子权重法曲线下面积(area under curve,AUC)分别为0.86和0.798,栅格赋值法评价精度优于因子权重法,基于BP神经网络模型的栅格赋值法更适用于研究区的滑坡易发性评价。Landslides are frequent geological disasters in China,landslide susceptibility evaluation involves many influencing factors.How to use multiple influencing factors to conduct accurate and effective landslide susceptibility evaluation is the key and premise of landslide disaster reduction and prevention.In order to discuss the applicability of different landslide susceptibility evaluation methods based on back propagation(BP)neural network model,Pujiang County in western Sichuan was took as the study area,and 12 types of impact factors such as geology,landform and environment were chosen after field survey and cataloging,the correlation between each impact factor and landslide were analyzed,the weight of the impact factor were determined,the BP neural network model were constructed,and the preparation and accuracy evaluation of landslide susceptibility evaluation map by factor weight method and grid assignment method were completed.The results show that there are no linear correlations among the 12 types of landslide influencing factors selected in the study area,and the slope,topographic wetness index(TWI)and distance from the road have obvious effects on the landslide development in the area.The BP neural network model constructed by the landslide influencing factors can effectively carry out the quantitative evaluation of landslide susceptibility.Based on the field investigation and receiver operating characteristic(ROC)curve accuracy analysis,the results show that the area under the curve(AUC)of grid assignment method and factor weight method based on BP neural network model are 0.86 and 0.798 respectively,and the evaluation accuracy of grid assignment method is better than that of factor weight method.The grid assignment method based on BP neural network model is more suitable for landslide vulnerability evaluation in the study area.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200