基于公交浮动车数据的城市主干道交通拥堵预测  被引量:3

Traffic Congestion Prediction of Urban Trunk Roads Based on Floating Bus Data

在线阅读下载全文

作  者:明秀玲 肖梅[1] 刘倩[1] 黄洪滔 MING Xiu-ling;XIAO Mei;LIU Qian;HUANG Hong-tao(College of Transportation Engineering,Chang'an University,Xi'an 710064,China)

机构地区:[1]长安大学运输工程学院,西安710064

出  处:《科学技术与工程》2023年第13期5770-5776,共7页Science Technology and Engineering

基  金:浙江省‘尖兵’‘领雁’研发攻关计划(2022C01105);陕西省自然科学基金(2023-JC-YB-588);陕西省社会科学基金(2022F021)。

摘  要:交通拥堵预测是解决交通拥堵问题的前提。针对速度特性分析不全面的问题,基于公交浮动车数据,在速度时间相关性和空间相关性分析的基础上,加入了公交流量和时间占有率两个特征,提出了考虑时空特性和公交车流特性的改进粒子群优化的径向基函数神经网络(particle swarm optimization-radial basis function,PSO-RBF)速度预测模型。通过比较预测结果与速度阈值,得到城市主干道的交通拥堵情况。结果表明,与只考虑时空特性的预测结果相比,所提出的基于时空特性和公交车流特性的预测方法,可使模型预测的均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)分别降低13.58%、12.63%,决定系数达92.39%。同时,实例验证了改进的PSO-RBF神经网络模型的预测精度要优于标准的PSO-RBF神经网络。Traffic congestion prediction is the prerequisite to solve the problem of traffic congestion.In order to solve the problem of incomplete analysis of speed characteristics,the spatio-temporal characteristic of speed was analyzed based on floating bus data,the two characteristics of bus traffic and time occupancy were used to propose the improved particle swarm optimization-radial basis function(PSO-RBF)neural network speed prediction model.Finally,through comparative prediction results and speed thresholds,traffic congestion of the urban main roads was obtained.The results show that compared with the prediction results that only consider the spatiotemporal characteristic,the proposed prediction method based on time-space characteristics and bus flow characteristics can reduce the root mean square error(RMSE)and mean absolute error(MAE)of the model prediction by 13.58%and 12.63%respectively,and the coefficient of determination reaches 92.39%.At the same time,the example verifies that the prediction accuracy of the improved PSO-RBF neural network is better than that of the standard PSO-RBF neural network.

关 键 词:交通拥堵预测 粒子群优化算法 径向基函数神经网络 公交浮动车数据 城市主干道 

分 类 号:U491.4[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象