检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许多 鲁旺平 许瑞清 张红雨 江洋 游良志[1,2,5] 冯在文 XU Duo;LU Wangping;XU Ruiqing;ZHANG Hongyu;JIANG Yang;YOU Liangzhi;FENG Zaiwen(College of Plant Science and Technology,Huazhong Agricultural University,Wuhan 430070,China;Macro Agricultural Research Institute,Huazhong Agricultural University,Wuhan 430070,China;College of Informatics,Huazhong Agricultural University,Wuhan 430070,China;Shuangshui ShuanglüInstitute,Huazhong Agricultural University,Wuhan 430070,China;International Food Policy Research Institute,Washington D.C.20005,USA)
机构地区:[1]华中农业大学植物科学技术学院,武汉430070 [2]华中农业大学宏观农业研究院,武汉430070 [3]华中农业大学信息学院,武汉430070 [4]华中农业大学双水双绿研究院,武汉430070 [5]国际食物政策研究所,美国华盛顿20005
出 处:《华中农业大学学报》2023年第3期281-292,共12页Journal of Huazhong Agricultural University
基 金:内蒙古自治区科技重大专项(2021SZD0099);作物遗传改良全国重点实验室开放基金项目(ZK202203);湖北洪山实验室重大项目(2022HSZD031);武汉大学杂交水稻国家重点实验室开放基金项目(SKLHR202101)。
摘 要:为构建基于农业时空大数据的管理系统,实现田间养分精细化管理,提出了一种面向精准施肥的农业时空多模态知识图谱的构建及其控制与决策方法。通过基于深度学习的子图匹配方法,将地块待查询图和农业时空多模态知识图谱中的节点和关系嵌入表示;利用向量相似度计算获取候选子图,并从存储历史数据信息的子图中获取适合查询地块的施肥模型数据。结果显示,基于实例化后的待施肥地块查询图,在农业时空多模态知识图谱中可获取与给定地块查询图同构的子图,并从存储历史决策信息的子图中,获得适合当前地块的农业施肥模型。结果表明,基于农业时空多模态知识图谱的农业模型自动化选择结果可为精准施肥任务提供新思路和决策支撑。Using information technology to realize the effective integration and application of multisource heterogeneous spatio-temporal multi-modal big data of agriculture is a key issue that needs to be urgently solved in the precision agriculture.A method of constructing,controlling and decision-making for precision fertilization was proposed based on the spatio-temporal multi-modal knowledge graph of agriculture to construct a management system and realize the fine management of nutrients in field.The nodes and relationships in the plots to be queried and the spatio-temporal multi-modal knowledge graph of agriculture were embedded and represented through the subgraph matching method based on deep learning.Vector similarity calculation was used to obtain candidate subgraphs.The fertilization model data suitable for query plots were obtained from the information of subgraphs storing historical data.The results showed sub maps isomorphic to the given land query map were obtained in the spatio-temporal multi-modal knowledge graph of agriculture based on the instantiated query map of the land to be fertilized.An agricultural fertilization model suitable for the current plot was obtained from the information of subgraph storing historical decision.It is indicated that the automatic selection of model based on spatio-temporal multi-modal knowledge graph of agriculture is accurate and reliable.It will provide decision-making support for precision fertilization.
关 键 词:时空 多模态知识图谱 智慧农业 精准施肥 水稻 农业大数据 知识共享
分 类 号:S511[农业科学—作物学] F49[经济管理—产业经济] TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249