检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵田祎 范昊龙 王素欢 陶美淳 杜媛媛[1] 唐丽梅[1] 李震中[1] 董梅[1] Zhao Tianyi;Fan Haolong;Wang Suhuan;Tao Meichun;Du Yuanyuan;Tang Limei;Li Zhenzhong;Dong Mei(Department of Neurology,the Second Hospital of Hebei Medical University,Shijiazhuang 050000,China)
机构地区:[1]河北医科大学第二医院神经内科,河北省神经病学重点实验室,石家庄050000
出 处:《脑与神经疾病杂志》2023年第5期315-319,共5页Journal of Brain and Nervous Diseases
基 金:河北省卫生健康委员会课题(20220996)。
摘 要:目的 探讨帕金森病(PD)与脑小血管病(CSVD)患者的步态模式,为PD与CSVD步态障碍的临床鉴别以及早期诊断提供依据。方法 选择就诊于河北医科大学第二医院神经内科的PD患者15例、CSVD患者20例,分别收集受试者的基线临床资料,并采用超高分辨率3D结构光传感器搭配前沿AI深度学习算法的运动功能定量评价系统收集各组步态参数(步速、摆动相、站立相、转身时间、步幅、跨步速度、摆动速度、步频、站立相、摆动相、双支撑相、步高、步宽)。使用IBM SPSS 26.0进行统计学分析,对比两组间的步态数据差异。结果 两组对比显示,PD组与CSVD组在步速、双侧摆动相、双侧站立相、双侧步幅、双侧跨步速度、双侧摆动速度、双侧步频、双侧步高、双支撑相、步宽的步态参数差异有统计学意义(P<0.05)。但在转身时间两组间无统计学差异。结论 PD患者与CSVD患者均存在不同程度的步态障碍,并表现出不同的异常步态模式,数字化步态分析可有助于预测与鉴别老年人异常步态表现,尤其在PD患者中。临床医生可结合PD与CSVD患者不同的步态表现,以达到对疾病早期识别、助于病情评估、指导康复治疗的目的。Objective To explore the gait patterns of patients with Parkinson's disease(PD)and cerebral small angiopathy(CSVD),and to provide a basis for the clinical differentiation of gait disorder between PD and CSVD and early diagnosis.Methods 15 PD patients and 20 CSVD patients were selected to be treated in the Department of Neurology of the Second Hospital of Hebei Medical University.The baseline clinical data of the subjects were collected separately,and the quantitative evaluation system of motor function using ultra-highresolution 3D structured light sensor and cutting-edge AI deep learning algorithm was used to collect each set of gait parameters(step speed,swing phase,standing phase,turn time,stride length,stride speed,swing speed,stride frequency,standing phase,swing phase,double support phase,step height,step width).Statistical analysis using IBM SPSS 26.0 to compare the differences in gait data between the two groups.Results The comparison between the two groups showed that there was a significant statistical difference between the gait parameters of the PD group and the CSVD group in terms of gait speed,bilateral swing phase,bilateral standing phase,bilateral stride length,bilateral stride speed,bilateral oscillation speed,bilateral cadence frequency,bilateral backgammon height,double support phase,and gait width(P<0.05).But there was no statistical difference between the two groups in turn time.Conclusion PD patients and CSVD patients have different degrees of gait disorder,and show different abnormal gait patterns.Digital gait analysis can help predict and identify abnormal gait performance in the elderly,especially in Parkinson's patients.Clinicians can combine the different gait manifestations of patients with PD and CSVD to achieve early identification of the disease,help evaluate the condition,and guide rehabilitation treatment.
分 类 号:R742.5[医药卫生—神经病学与精神病学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222