The impact of genotyping strategies and statistical models on accuracy of genomic prediction for survival in pigs  被引量:1

在线阅读下载全文

作  者:Tianfei Liu Bjarne Nielsen Ole F.Christensen Mogens SandøLund Guosheng Su 

机构地区:[1]Institute of Animal Science,Guangdong Academy of Agricultural Sciences,Guangzhou 510640,China [2]Center for Quantitative Genetics and Genomics,Aarhus University,8830 Tjele,Denmark [3]Pig Research Centre,SEGES,1609 Copenhagen,Denmark

出  处:《Journal of Animal Science and Biotechnology》2023年第3期908-916,共9页畜牧与生物技术杂志(英文版)

基  金:funded by the"Genetic improvement of pig survival"project from Danish Pig Levy Foundation (Aarhus,Denmark);The China Scholarship Council (CSC)for providing scholarship to the first author。

摘  要:Background:Survival from birth to slaughter is an important economic trait in commercial pig productions.Increasing survival can improve both economic efficiency and animal welfare.The aim of this study is to explore the impact of genotyping strategies and statistical models on the accuracy of genomic prediction for survival in pigs during the total growing period from birth to slaughter.Results:We simulated pig populations with different direct and maternal heritabilities and used a linear mixed model,a logit model,and a probit model to predict genomic breeding values of pig survival based on data of individual survival records with binary outcomes(0,1).The results show that in the case of only alive animals having genotype data,unbiased genomic predictions can be achieved when using variances estimated from pedigreebased model.Models using genomic information achieved up to 59.2%higher accuracy of estimated breeding value compared to pedigree-based model,dependent on genotyping scenarios.The scenario of genotyping all individuals,both dead and alive individuals,obtained the highest accuracy.When an equal number of individuals(80%)were genotyped,random sample of individuals with genotypes achieved higher accuracy than only alive individuals with genotypes.The linear model,logit model and probit model achieved similar accuracy.Conclusions:Our conclusion is that genomic prediction of pig survival is feasible in the situation that only alive pigs have genotypes,but genomic information of dead individuals can increase accuracy of genomic prediction by 2.06%to 6.04%.

关 键 词:Genomic prediction Genotyping strategy Simulation Statistical models SURVIVAL 

分 类 号:S828.2[农业科学—畜牧学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象