检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王美[1,2] 杨欣欣[1] 李慧颖 刘泱[1] 张俊华[3] WANG Mei;YANG Xinxin;LI Huiying;LIU Yang;ZHANG Junhua(Shengli Oilfield Technology Inspection Center,Dongying Shandong 257000,China;College of Computer and Technology,China University of Petroleum,Qingdao Shandong 266580,China;Shengli Oil Production Plant,Dongying Shandong 257000,China)
机构地区:[1]胜利油田分公司技术检测中心,山东东营257000 [2]中国石油大学(华东)计算机科学与技术学院,山东青岛266580 [3]胜利采油厂,山东东营257000
出 处:《安全》2023年第5期55-60,共6页Safety & Security
基 金:中国石油化工股份有限公司科研项目(320044)。
摘 要:为了在油田施工作业过程中及时准确地发现施工人员的违章行为,保证油田的安全生产,提出一种基于二维图像识别油田违章行为的监测技术。该技术采用一种目标检测与关键点定位的多任务联合学习算法,提高传统算法的准确率;采用目标属性二次分析的方法识别目标精细情况;采用目标追踪与时序人体行为分析方法实时跟踪人的行为动作。并通过不同场景的2367例样本的应用显示,识别准确率80%以上,召回率75%以上,表明该技术对一般违章行为识别的准确率较高。In order to timely and accurately detect the violations of construction personnel during oilfield construction operations and ensure the safe production of oilfields,a monitoring technology based on two-dimensional image recognition of oilfield violations is proposed.The technology adopts a multi-task joint learning algorithm of target detection and key point localization to improve the accuracy of the traditional algorithm;A secondary analysis of target properties was used to identify target fine conditions;Target tracking and temporal human behavior analysis are used to track human behavior in real time.Through the application of 2367 samples in different scenarios,the identification accuracy is more than 80%and the recall rate is more than 75%,indicating that the technology has a high accuracy rate for general violation recognition.
分 类 号:X924[环境科学与工程—安全科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.244