检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:方策 牟奇锋[1] 冯晓磊[1] FANG Ce;MOU Qi-feng;FENG Xiao-lei(Airport College,Civil Aviation Flight Univ.of China,Guanghan 618307,Sichuan Province,China)
机构地区:[1]中国民用航空飞行学院机场学院,四川广汉618307
出 处:《信息技术》2023年第5期36-40,共5页Information Technology
基 金:中国民用航空飞行学院科研基金面上项目(THZX-2018-04)。
摘 要:文中针对飞行服务站选址问题,构建以总成本最小、覆盖率最大的多目标逐渐覆盖选址模型。考虑覆盖问题实际中的应用,在目标函数引入岭型分布曲线描述逐渐覆盖函数;关于多目标选址问题,通过改进的多目标粒子群计算进行解决;并通过拥挤距离的计算对外部归档进行限制,提高算法的运行效率。通过算例进行运算,求解最优方案,结果表明改进多目标粒子群算法具有较好的收敛性,可以有效实现飞行服务站选址问题。To solve the problem of flight service station location,this paper constructs a multi-target gradual coverage location model with the smallest total cost and the largest coverage.Considering the practical application of the coverage problem,a ridge-shaped distribution curve is introduced into the objective function to describe the gradual coverage function.For the multi-target location problem,an improved multi-target particle swarm algorithm is used to solve the problem,and the crowding distance calculation is used to limit the external archives to improve the operating efficiency of the algorithm.Through calculation examples,the optimal solution is solved.The results show that the improved multi-objective particle swarm algorithm has good convergence and can effectively realize the location of flight service station.
关 键 词:飞行服务站 多目标 逐渐覆盖 选址规划 粒子群算法
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7