检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张雷雨[1] 曾毅[2] 李胜辉[2] 王玉萍[2] ZHANG Leiyu;ZENG Yi;LI Shenghui;WANG Yuping(School of Architecture and Engineering,Lianyungang Technical University,Lianyungang 222006,China;School of Information Engineering,Zhengzhou University of Science&Technology,Zhengzhou 450064,China)
机构地区:[1]连云港职业技术学院建筑工程学院,江苏连云港222006 [2]郑州科技学院信息工程学院,河南郑州450064
出 处:《无线电工程》2023年第6期1359-1367,共9页Radio Engineering
基 金:江苏省高等学校自然科学研究(21KJD420001);江苏省高校“青蓝工程”资助项目(2020);河南省科技厅科技攻关项目(202102210171)。
摘 要:针对现有协同表示算法应用在高光谱遥感图像分类过程中出现的较差分类精度的问题,提出了一种基于加权判别性协同表示的分类算法。提出的算法对高光谱图像进行基于空间邻域的平滑化处理以消除图像中的噪声和异常光谱。通过考虑训练样本和测试样本的相关性提出基于相关性的加权正则项;通过考虑不同类别训练样本重构给定测试样本的误差进一步提出了基于最小重构误差的正则项。在Indian Pines和University of Pavia两种真实数据集上的实验结果表明,所提出的算法相比其他典型的基于协同表示的分类算法具有更高的分类精度,分别能获得98.2%和95.70%的总体精度。实验证明,所提出的分类器算法有效改善了现有基于协同表示的高光谱图像分类方法的低精度问题。To handle the problem of insufficient classification accuracy in the application of existing collaborative representation algorithms in hyperspectral remote sensing image classification,a classification algorithm based on weighted discriminative collaborative representation is proposed.The hyperspectral image is performed smooth processing based on the spatial neighborhood by the proposed algorithm to eliminate the noise and abnormal spectrum in the image.Then a weighted regularization term is proposed by considering the correlations between the training samples and the test samples.Meanwhile,a regularization term is further proposed based on the minimum reconstruction error by considering the errors of different training samples to reconstruct a given test sample.The experimental results on two real datasets,Indian Pines and University of Pavia,show that the proposed algorithm has higher classification accuracy than other typical classification algorithms based on collaborative representation,and the overall accuracy of 98.2%and 95.70%can be obtained by the proposed algorithm,respectively.The experimental results show that the proposed classifier algorithm effectively improves the accuracy of the existing hyperspectral image classification methods based on collaborative representation.
关 键 词:高光谱图像 协同表示 空间光谱信息 高光谱图像分类 光谱
分 类 号:TP753.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.252.197