检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于天河[1] 柳梦瑶 YU Tianhe;LIU Mengyao(School of Electrical and Electronic Engineering,Harbin University of Science and Technology,Harbin 150080,China)
机构地区:[1]哈尔滨理工大学电气与电子工程学院,哈尔滨150080
出 处:《北京邮电大学学报》2023年第2期129-136,共8页Journal of Beijing University of Posts and Telecommunications
摘 要:提出了一种基于改进韦伯局部特征的图像质量评价方法。首先,模拟人眼识别图像对比度的机制,改进了灰度优化算法并保留了彩色图像最优对比度;然后模拟人眼识别图像中目标内容轮廓的机制,使用Prewitt算子计算邻域内的梯度方向,并计算邻域内垂直和水平方向的差分激励值并求和,以提取出图像的边缘信息;最后使用支持向量机训练多种数据集中图像的一维特征数据,并构建了图像质量评价模型。实验结果表明,所提方法比人眼识别方法的效果更具一致性,具有准确率高、适用性良好和预测方向性强等优点。An image quality evaluation method based on improved Weber local features is proposed.First,the mechanism of image contrast recognition by the human visual system is simulated.The improved gray optimization algorithm retains the best contrast of the color image.Then,prewitt operator is used to calculate the gradient direction in the neighborhood.Next,the differential excitation values in the vertical and horizontal directions in the neighborhood are calculated and summed to obtain the edge information of the image.Finally,the support vector machine is used to train the one-dimensional feature data of the images in various databases to construct an image quality evaluation model.Experiments show that the method has the advantages of higher accuracy,better applicability and strong prediction direction.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.71.192