检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李风增 LI Fengzeng(Zhengzhou Highway Development Centre,Zhengzhou 450015,China;Henan Transportation Research Institute Co.,Ltd.,Zhengzhou 450015,China)
机构地区:[1]郑州市公路事业发展中心,河南郑州450015 [2]河南省交通科学技术研究院有限公司,河南郑州450015
出 处:《粉煤灰综合利用》2023年第3期126-133,共8页Fly Ash Comprehensive Utilization
基 金:河北省教育厅科研发展基金项目(2020J0148)。
摘 要:28 d抗压强度是混凝土应用过程中重要的强度指标。本文采用人工神经元网络模型(ANN)对加入了高炉矿渣和粉煤灰的混凝土28 d抗压强度进行了预测,研究了ANN隐含层数、传递函数类型和优化算法对抗压强度预测结果的影响,发现采用单一隐含层的7-23-1网络结构、隐含层和输出层均采用purelin传递函数、trainlm算法进行计算,建立的ANN结构最佳,仅需0.29 s、经过3个历元,预测值的MSE就能降到0.004左右,训练、验证和测试阶段ANN的预测结果与试验结果回归曲线斜率均大于97%,两者十分吻合。The 28 d compressive strength is an important index in concrete application.In this study,an artificial neural network model(ANN)was used to predict the compressive strength of concrete added with blast furnace slag and fly ash.The effects of number of hidden layer,transfer function types and optimization algorithms on ANN output were researched.The results showed that the 7-23-1 network structure with one hidden layer,purelin transfer function in the hidden and output layer,and trainlm algorithm established the optimal network.The established ANN only takes 0.29 seconds to reduce the MSE of prediction values to about 0.004 with 3 epoches.The slopes of the regression curves between the ANN outputs and the experimental results in the training,verification,and testing stages were greater than 97%,which indicated the consistence between prediction values and experimental ones.
分 类 号:TV431[水利工程—水工结构工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49