Connectivity-based Cortical Parcellation via Contrastive Learning on Spatial-Graph Convolution  

在线阅读下载全文

作  者:Peiting You Xiang Li Fan Zhang Quanzheng Li 

机构地区:[1]Massachusetts General Hospital and Harvard Medical School,Boston,MA,USA [2]Beijing International Center for Mathematical Research(BICMR),Peking University,Beijing,China [3]Brigham and Women’s Hospital and Harvard Medical School,Boston,MA,USA

出  处:《Biomedical Engineering Frontiers》2022年第1期105-115,共11页生物医学工程前沿(英文)

摘  要:Objective.Objective of this work is the development and evaluation of a cortical parcellation framework based on tractography-derived brain structural connectivity.Impact Statement.The proposed framework utilizes novel spatial-graph representation learning methods for solving the task of cortical parcellation,an important medical image analysis and neuroscientific problem.Introduction.The concept of“connectional fingerprint”has motivated many investigations on the connectivity-based cortical parcellation,especially with the technical advancement of diffusion imaging.Previous studies on multiple brain regions have been conducted with promising results.However,performance and applicability of these models are limited by the relatively simple computational scheme and the lack of effective representation of brain imaging data.Methods.We propose the Spatial-graph Convolution Parcellation(SGCP)framework,a two-stage deep learning-based modeling for the graph representation brain imaging.In the first stage,SGCP learns an effective embedding of the input data through a self-supervised contrastive learning scheme with the backbone encoder of a spatial-graph convolution network.In the second stage,SGCP learns a supervised classifier to perform voxel-wise classification for parcellating the desired brain region.Results.SGCP is evaluated on the parcellation task for 5 brain regions in a 15-subject DWI dataset.Performance comparisons between SGCP,traditional parcellation methods,and other deep learning-based methods show that SGCP can achieve superior performance in all the cases.Conclusion.Consistent good performance of the proposed SGCP framework indicates its potential to be used as a general solution for investigating the regional/subregional composition of human brain based on one or more connectivity measurements.

关 键 词:CONNECTIVITY PARCEL SPATIAL 

分 类 号:R318[医药卫生—生物医学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象