检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:毕文龙 魏笑 谭草 赵彦峻[1,2] 刘文龙 BI Wen-long;WEI Xiao;TAN Cao;ZHAO Yan-jun;LIU Wen-long(School of Mechanical Engineering,Shandong University of Technology,Zibo 255049,China;Shandong Provincial Key Laboratory of Precision Manufacturing and Non-traditional Machining,Zibo 255049,China)
机构地区:[1]山东理工大学机械工程学院,淄博255049 [2]山东省精密制造与特种加工重点实验室,淄博255049
出 处:《科学技术与工程》2023年第16期6952-6958,共7页Science Technology and Engineering
基 金:国家自然科学基金(51905319);国家自然科学基金青年科学基金(51505263);山东省高等学校科技计划项目(J15LB08)。
摘 要:为解决失能人群自主移动的问题,脑机接口(brain computer interface,BCI)已广泛应用于外骨骼领域,但脑电(electroencephalogram,EEG)信号因信噪比低等原因导致识别率一直难以提高。为提高基于脑机接口下肢外骨骼的信号识别率,采用粒子群优化支持向量机(particle swarm optimization-support vector machine,PSO-SVM)算法提高脑电信号识别率,取得了86.52%的脑电信号识别率。首先建立共空间模式(common spatial pattern,CSP)数学模型对脑电信号进行特征提取,随后建立基于粒子群优化的支持向量机分类模型,优化脑电信号分类关键参数,将最终的实验数据与传统的支持向量机分类方法比较,最后进行算法的验证及下肢外骨骼实验。实验结果表明:经过粒子群优化的支持向量机分类准确明显高于传统支持向量机分类。所提出粒子群优化支持向量机对脑电信号的特征识别方法可实现运动想象(motor imagery,MI)的精确识别,为脑机接口技术在康复外骨骼领域的应用提供理论基础和技术支持。In order to solve the problem of autonomous movement of disabled people brain computer interface(BCI)has been applied in the exoskeleton widely.In the practical use,the low signal-noise ratio of electroencephalogram(EEG)signal results in the low classification accuracy in BCI.In order to improve the signal recognition rate of lower limb exoskeleton based on brain computer interface,particle swarm optimization support vector machine(PSO-SVM)algorithm was used to improve the EEG signal recognition rate,and 86.52%EEG signal recognition rate was achieved.Firstly,the common spatial pattern(CSP)mathematical model was established for feature extraction of EEG signals,and then a particle PSO-SVM classification model was established.Secondly,the key parameters of EEG classification were optimized,and the final experimental data were compared with the traditional SVM classification method.Finally,the algorithm was verified and the lower limb exoskeleton experiment was carried out.The experimental results show that the classification accuracy of PSO-SVM is significantly higher than that of traditional SVM,and the average classification result can reach 86.52%,which improves the recognition rate of motor imagery(MI)EEG signals.The proposed method of feature recognition of MI signals based on PSO-SVM,which can realize the accurate recognition of MI,and provide theoretical basis and technical support for the application of brain computer interface technology in the field of exoskeleton.
关 键 词:运动想象(MI) 脑电信号(EEG) 支持向量机(SVM) 特征识别 下肢外骨骼
分 类 号:TP391[自动化与计算机技术—计算机应用技术] R681[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200