基于改进YOLOv5的红外沥青路面裂缝检测方法  被引量:4

Infrared Asphalt Pavement Crack Detection Method Based on Improved YOLOv5

在线阅读下载全文

作  者:陈红[1] 王俊杰[1] CHEN Hong;WANG Junjie(School of Engineering,Ocean University of China,Qingdao 266500,China)

机构地区:[1]中国海洋大学工程学院,山东青岛266500

出  处:《电视技术》2023年第4期43-50,共8页Video Engineering

基  金:山东省重点研发计划项目(2019GHY112081)。

摘  要:针对沥青路面可见光图像在某些光照条件下检测效果不佳的问题,提出一种基于改进YOLOv5的红外图像沥青路面裂缝检测方法。以YOLOv5s为基础,融合Ghost模块优化主干网络和颈部网络结构,提高模型信息感知的全面性,降低模型复杂程度;引入坐标注意力(Coordinate Attention,CA)模块,增强对裂缝关键信息的提取,提高红外裂缝检测模型的准确度。采用红外热成像技术,结合数据增强构建红外沥青路面裂缝数据集,在自建的数据集上进行对比实验。实验结果表明,该方法的准确率(Precision,P)、召回率(Recall,R)、平均精度均值(mean Average Precision,mAP)可达到87.4%,82.5%,86.7%,相较于YOLOv5s检测方法分别提升3.4%,2.8%,5.0%,且模型计算量节省了48.73%,在嵌入式设备Jetson Xavier NX上可以实现31.25 f·s^(-1)的检测速度,为后续移动机器人端实时路面裂缝检测提供了一种解决方案。Aiming at the problem that visible images of asphalt pavement have poor detection effect under certain illumination conditions,an infrared image crack detection method of asphalt pavement based on improved YOLOv5 is proposed.Based on YOLOv5s,Ghost module is integrated to optimize the backbone network and neck network structure to improve the comprehensiveness of the model information perception and reduce model complexity;Coordinate Attention(CA)module is introduced to enhance the extraction of key fracture information and improve infrared crack detection model accuracy.Infrared thermal imaging technology is used to construct infrared asphalt pavement crack data set combined with data enhancement,and comparative experiments are carried out on the selfbuilt data set.The experimental results show that Precision(P),Recall(R)and mean Average Precision(mAP)of this method can reach 87.4%,82.5%and 86.7%,which is 3.4%,2.8%and 5.0%higher than Y0L0v5s method,and the model calculation amount saves 48.73%.The embedded device Jetson Xavier NX can achieve a detection speed of 31.25 f·s^(-1),providing a solution for the follow-up real-time pavement crack detection by mobile robots.

关 键 词:裂缝检测 红外图像 注意力机制 嵌入式设备 

分 类 号:TP311.1[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象