Event-based Two-stage Non-intrusive Load Monitoring Method Involving Multi-dimensional Features  被引量:1

在线阅读下载全文

作  者:Yongjun Zhou Shu Zhang Bolu Ran Wei Yang Ying Wang Xianyong Xiao 

机构地区:[1]College of Electrical Engineering,Sichuan University,Chengdu 610065,China [2]State Grid Tibet Power Company,Ltd,Lhasa 850000,China [3]State Grid Hangzhou Power Supply Company,Hangzhou 310000,China

出  处:《CSEE Journal of Power and Energy Systems》2023年第3期1119-1128,共10页中国电机工程学会电力与能源系统学报(英文)

基  金:supported by the National Science Foundation of China(U2166209,52007126);the Science and Technology Project of State Grid Tibet Electric Power Company(52311020009X)。

摘  要:This paper proposes an event-based two-stage Nonintrusive load monitoring(NILM)method involving multidimensional features,which is an essential technology for energy savings and management.First,capture appliance events using a goodness of fit test and then pair the on-off events.Then the multi-dimensional features are extracted to establish a feature library.In the first stage identification,several groups of events for the appliance have been divided,according to three features,including phase,steady active power and power peak.In the second stage identification,a“one against the rest”support vector machine(SVM)model for each group is established to precisely identify the appliances.The proposed method is verified by using a public available dataset;the results show that the proposed method contains high generalization ability,less computation,and less training samples.

关 键 词:Feature library multi-dimensional features NILM residential appliances SVM two-stage identification 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] TM73[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象