基于云计算模型的分数阶超混沌加密算法  被引量:1

Fractional-order Hyperchaotic Encryption Algorithm Based on Cloud Computing Model

在线阅读下载全文

作  者:隋宇 陈亚彬 曹华珍 韦斌 SUI Yu;CHEN Ya-bin;CAO Hua-zhen;WEI Bin(Program&Research Center,Guangdong Power Grid Corporation,Guangzhou,Guangdong 510062,China)

机构地区:[1]广东电网有限责任公司电网规划研究中心,广东广州510062

出  处:《计算技术与自动化》2023年第2期130-136,共7页Computing Technology and Automation

基  金:广东电网专题研究项目(031000QQ00220007)。

摘  要:针对大数据安全以及混沌加密安全性等问题,提出了一种基于云计算模型的分数阶超混沌系统的加密算法。首先选取了两个分数阶超混沌系统的初始值作为密钥参数,基于分数阶混沌生成用于加密的伪随机序列,进而提出了一个结合云计算MapReduce并行数据处理模型的加密算法。在MapReduce并行加密方面,依次进行分块、Map并行加密和Reduce数据归并等操作。为了抵御明文类的密码攻击,算法中采用与明文特征关联的混沌序列生成方法。最后,在云计算实验环境中的实验结果表明,该算法的密钥空间达到372 bit,能够有效抵御明文类的密码攻击,具有密钥高度敏感的特性。同时,实验结果验证了云计算MapReduce并行加密的有效性。To address the issues of big data security and chaotic encryption security,this paper proposes a fractional-order hyperchaotic encryption algorithm based on the cloud computing model.Firstly,the initial values of the two fractional-order hyperchaotic systems are served as key parameters,and pseudo-random sequences are generated for encryption based on fractional-order chaos,and then an encryption algorithm that combines the MapReduce parallel data processing model of cloud computing is proposed.For MapReduce parallel encryption,operations such as chunking,Map parallel encryption and Reduce data merging are performed sequentially.To resist plaintext-type cryptographic attacks,a chaotic sequence generation method associated with plaintext features is used in the algorithm.Finally,the experimental results in the cloud computing experimental environment show that the algorithm has a key space of 372 bit,which can effectively resist plaintext-type cryptographic attacks with highly sensitive keys.Meanwhile,the experimental results verify the effectiveness of MapReduce parallel encryption for cloud computing.

关 键 词:分数阶 混沌 加密 云计算 

分 类 号:TN919[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象