检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王艺颖 WANG Yiying(Shenzhen Koron Soft Co.,Ltd.,Shenzhen 518020,China)
机构地区:[1]深圳市科荣软件股份有限公司,深圳518020
出 处:《给水排水》2023年第5期156-164,共9页Water & Wastewater Engineering
摘 要:基于水厂运行大数据的采集,分别运用随机森林、XGBoost、BP神经网络3种人工智能算法,对混凝投药过程进行非线性建模和非线性预测,构建出水浊度预测模型并进行评估和对比,再以沉淀池出水浊度为控制目标进行最佳投药量求解。同时,模型通过统计短时间隔流速计算混凝至出水之间的滞后时间,提高系统时滞计算的准确性。系统通过算法调用实现实时投药量计算,并与SCADA系统实现数据同步,最终通过SCADA下发指令实现对投药泵的控制。Based on the acquisition of big-data in water treatment plant(WTP)operation,three artificial intelligence algorithms of random forest,XGBoost and BP neural network were used to carry out nonlinear modeling and nonlinear prediction of the coagulation and dosing process,and the effluent turbidity prediction model was constructed,evaluated and compared,and then the optimal dosage was solved with the effluent turbidity of the sedimentation tank as the control target.At the same time,the model calculates the lag time between coagulation and effluent by counting the short-time interval flow rate,which improves the accuracy of the system time delay calculation.The system realizes real-time dosing amount calculation through algorithm invocation,realizes data synchronization with SCADA system,and finally realizes the control of dosing pumps through SCADA command delivery.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7