检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Mohamed Fathallah Mohamed Sakr Sherif Eletriby
机构地区:[1]Department of Computer Science,Faculty of Computers and Information,Kafrelsheikh University,Kafrelsheikh,Egypt [2]Department of Computer Science,Faculty of Computers and Information,Menoufia University,Menoufia,Egypt
出 处:《Computers, Materials & Continua》2023年第7期383-396,共14页计算机、材料和连续体(英文)
摘 要:Text-to-image generation is a vital task in different fields,such as combating crime and terrorism and quickly arresting lawbreakers.For several years,due to a lack of deep learning and machine learning resources,police officials required artists to draw the face of a criminal.Traditional methods of identifying criminals are inefficient and time-consuming.This paper presented a new proposed hybrid model for converting the text into the nearest images,then ranking the produced images according to the available data.The framework contains two main steps:generation of the image using an Identity Generative Adversarial Network(IGAN)and ranking of the images according to the available data using multi-criteria decision-making based on neutrosophic theory.The IGAN has the same architecture as the classical Generative Adversarial Networks(GANs),but with different modifications,such as adding a non-linear identity block,smoothing the standard GAN loss function by using a modified loss function and label smoothing,and using mini-batch training.The model achieves efficient results in Inception Distance(FID)and inception score(IS)when compared with other architectures of GANs for generating images from text.The IGAN achieves 42.16 as FID and 14.96 as IS.When it comes to ranking the generated images using Neutrosophic,the framework also performs well in the case of missing information and missing data.
关 键 词:GAN deep learning text-to-image identity GAN
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49