非匀速运动物体系统的动生麦克斯韦方程组理论  

Theory of Maxwell's equations for a mechano-driven media system for a non-inertia medium movement system

在线阅读下载全文

作  者:王中林[1,2,3] 邵佳佳 WANG ZhongLin;SHAO JiaJia(Beijing Institute of Nanoenergy and Nanosystems,Chinese Academy of Sciences,Beijing 101400,China;School of Nanoscience and Technology,University of Chinese Academy of Sciences,Beijing 100049,China;School of Materials Science and Engineering,Georgia Institute of Technology,Atlanta 30332-0245,USA)

机构地区:[1]中国科学院北京纳米能源与系统研究所,北京101400 [2]中国科学院大学纳米科学与技术学院,北京100049 [3]佐治亚理工学院材料科学与工程学院,美国亚特兰大30332-0245

出  处:《中国科学:技术科学》2023年第6期803-819,共17页Scientia Sinica(Technologica)

摘  要:从实际工程应用角度出发,我们构建了非匀速运动介质(物体)系统中的动生麦克斯韦方程组(Maxwell’s equations for a mechano-driven media system),拟解决在非惯性系中低速变速运动介质以及介质形状和边界随时间/空间变化时电磁场的动力学演化规律.本文概括总结了动生麦克斯韦方程组理论的核心内容,包括方程组的构建背景、物理图像、基本特点、与经典方程组之间的区别和联系、求解方法、潜在应用范围等.深入探讨了动生麦克斯韦方程组和经典麦克斯韦方程组之间的四个主要区别,并提出近场电动力学与远场电动力学的基本概念.最后,对动生麦克斯韦方程组在科学和技术方面的潜在影响进行分析和展望.Starting from the practical engineering applications,we derived Maxwell's equations for a mechano-driven,media system(MEs-f-MDMS)based on Galilean space and time.This expanded Maxwell's equations should reveal the dynamics of an electromagnetic field for a general case,in which the medium has a time and or space-dependent volume,shape,and boundary and may move in an arbitrary,slow-moving velocity field v(r,t).This paper systematically reviews the studies and theories of the MEs-f-MDMS,which includes the basic construction background,physical picture,the essential differences and relations of the classical Maxwell's equations,solving process of the nonlinear equations,and all kinds of potential applications.Most importantly,in comparison to the existing classical electrodynamics,the newly developed MEs-f-MDMS marks four unique advances,which have been summarized and the near field electrodynamics vs.the far field electrodynamics are proposed.Finally,in this work,it also takes analysis and forecast toward this newly built MEs-f-MDMS in science and technology for the future.

关 键 词:动生麦克斯韦方程组 动生极化 位移电流 非惯性系 法拉第电磁感应定律 “反通量法则” 

分 类 号:O441.4[理学—电磁学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象