机构地区:[1]Department V of Internal Medicine I,Discipline of Internal Medicine IV,“Victor Babes”University of Medicine and Pharmacy Timis,oara,Romania,Timis,oara,Romania [2]Department of Surgery X,1st Surgery Discipline,“Victor Babes”University of Medicine and Pharmacy Timis,oara,Romania,Timis,oara,Romania [3]Department I,Discipline of Anatomy and Embriology,“Victor Babes”University of Medicine and Pharmacy Timis,oara,Romania,Timis,oara,Romania [4]Department VII of Internal Medicine II,Discipline of Gastroenterology and Hepatology,“Victor Babes”University of Medicine and Pharmacy Timis,oara,Romania,Timis,oara,Romania
出 处:《Gastroenterology Report》2021年第3期185-204,I0001,共21页胃肠病学报道(英文)
摘 要:This article analyses the literature regarding the value of computer-assisted systems in esogastroduodenoscopy-quality monitoring and the assessment of gastric lesions.Current data show promising results in upper-endoscopy quality control and a satisfactory detection accuracy of gastric premalignant and malignant lesions,similar or even exceeding that of experienced endoscopists.Moreover,artificial systems enable the decision for the best treatment strategies in gastriccancer patient care,namely endoscopic vs surgical resection according to tumor depth.In so doing,unnecessary surgical interventions would be avoided whilst providing a better quality of life and prognosis for these patients.All these performance data have been revealed by numerous studies using different artificial intelligence(AI)algorithms in addition to white-light endoscopy or novel endoscopic techniques that are available in expert endoscopy centers.It is expected that ongoing clinical trials involving AI and the embedding of computer-assisted diagnosis systems into endoscopic devices will enable real-life implementation of AI endoscopic systems in the near future and at the same time will help to overcome the current limits of the computer-assisted systems leading to an improvement in performance.These benefits should lead to better diagnostic and treatment strategies for gastric-cancer patients.Furthermore,the incorporation of AI algorithms in endoscopic tools along with the development of large electronic databases containing endoscopic images might help in upper-endoscopy assistance and could be used for telemedicine purposes and second opinion for difficult cases.本文通过文献综述,对计算机辅助系统在食管胃十二指肠镜质量监测和胃病变评估方面的应用价值进行了分析。目前数据表明,计算机辅助系统能为上消化道内镜检查提供良好的质量控制,并能较为准确地检出胃恶性肿瘤及癌前病变,与经验丰富的内镜医师相当,甚至更佳。同时,人工智能(AI)能够为胃癌患者确定最佳治疗策略,即根据肿瘤浸润深度进行内镜或手术切除,从而在保证生活质量和远期预后的同时,避免不必要的手术干预。各种不同算法的AI应用于上消化道内镜检查中,无论是普通的白光内镜,还是一些专业内镜中心所采用的新型内镜技术,都显示出良好的效果。目前在研的一些关于AI及计算机辅助诊断系统嵌入内镜设备的临床试验,其结果值得期待,有望实现AI内镜系统在未来的真实应用,突破当前计算机辅助系统的不足,提高检测效能。这些改进能为胃癌患者提供更好的诊疗策略。而且,将AI算法融入到内镜设备,加之包含内镜图像的大数据,或可进一步拓展上消化道内镜的应用空间,包括远程医疗和疑难病例的会诊。
关 键 词:artificial intelligence computer-assisted diagnosis gastric cancer premalignant gastric lesion upper-endoscopy quality control
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...