云模型优化径向基函数神经网络算法研究  被引量:4

Research on Cloud Model Optimization Radial Basis Function Neural Network Algorithm

在线阅读下载全文

作  者:刘轲 张冉[2] 崔志斌[2] 张殿宝[2] 高社干 LIU Ke;ZHANG Ran;CUI Zhibin;ZHANG Dianbao;GAO Shegan(School of Information Engineering,Henan University of Science and Technology,Luoyang 471023,China;The First Affiliated Hospital,Henan University of Science and Technology,Luoyang 471023,China)

机构地区:[1]河南科技大学信息工程学院,河南洛阳471023 [2]河南科技大学第一附属医院,河南洛阳471023

出  处:《河南科技大学学报(自然科学版)》2023年第5期49-55,M0005,共8页Journal of Henan University of Science And Technology:Natural Science

基  金:国家自然科学基金项目(81972571,U1604191);河南省医学科技攻关计划(2018020266);河南省医学科技攻关计划(LHGJ20200578)。

摘  要:径向基函数(RBF)神经网络广泛用于各类医学预测模型中,针对RBF神经网络隐含层高斯径向基函数的参数确定困难,影响癌症预后模型的因素具有多样性和模糊性等问题。利用云模型优化RBF神经网络算法,通过高维云变换确定RBF隐含层神经元,优化RBF神经网络结构。用来自美国国家癌症研究所监测、流行病学和最终结果(SEER)数据库的4771例食管鳞状细胞癌患者数据建模仿真与传统的仿真对比,证明该模型预测生存期的C-index为0.705,远高于肿瘤等级、列线图和RBF神经网络(0.598、0.627和0.632),能更好更准确地对食管鳞状细胞癌患者进行预后预测。Radial basis function(RBF)neural network is widely used in various medical prediction models.It is difficult to determine the parameters of Gaussian radial basis function in the hidden layer of RBF neural network,and it cannot solve the problems such as diversity and fuzziness of factors affecting cancer prognosis models.The cloud model was used to optimize the RBF neural network algorithm,and the RBF hidden layer neurons were determined by high-dimensional cloud transformation,so as to optimize the structure of the RBF neural network.Finally,the comparison between the modeling simulation data of 4771 patients with esophageal squamous cell carcinoma(ESCC)from the surveillance,epidemiology and end results(SEER)database of the American national cancer institute and the traditional simulation proved that the C-index of survival prediction of the model was 0.705,which was much higher than that of the tumor grade,nomogram and RBF neural network(0.598,0.627 and 0.632).The prognosis of patients with ESCC could be better and more accurately predicted.

关 键 词:云模型 云变换 径向基函数神经网络 预后 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象