检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马怡婷 张太雷[1] 邓金超 刘俊利[2] MA Yiting;ZHANG Tailei;DENG Jinchao;LIU Junli(School of Science,Chang'an University,Xi'an 710064,China;School of Science,Xi'an Polytechnic University,Xi'an 710048,China)
机构地区:[1]长安大学理学院,陕西西安710064 [2]西安工程大学理学院,陕西西安710048
出 处:《山西大学学报(自然科学版)》2023年第3期574-584,共11页Journal of Shanxi University(Natural Science Edition)
基 金:陕西省自然科学基础研究计划(2022JM-023,2021JM-445)。
摘 要:针对COVID-19的特点,建立了一类潜伏期与染病期均传染且具有病毒变异的SEI1I2QR传染病模型。首先,得到了模型的基本再生数与平衡点,利用Routh-Hurwitz判据、Lyapunov函数及LaSalle不变集原理证明了各类平衡点的全局稳定性。其次,选取印度的COVID-19累计病例数,对模型的参数进行了估计,并对疫情发展趋势进行了数值模拟。最后,对部分参数进行了敏感性分析,结果表明,易感者与潜伏者的有效接触率、易感者与病毒变异前的染病者的有效接触率和基本再生数之间存在强相关性关系,降低易感者与染病者的有效接触率可以有效控制疫情的进一步蔓延。According to the characteristics of COVID-19,an SEI1 I2QR infectious disease model with virus variation and infection in both incubation and infection period was established in this paper.Firstly,the basic reproduction number and the equilibrium point of the model was obtained,and the global stability of various equilibrium was proved by using Routh-Hurwitz criterion,Lyapunov function and LaSalle invariant set principle.Secondly,the cumulative number of COVID-19 cases in India was chosen to estimate the parameters of the model and simulate the trend of disease development.Finally,the sensitivity analysis was carried out on some parameters.The results show that the parameters with most influence on the basic reproduction number are the effective contact rate between susceptible individual and latent people,the effective contact rate between susceptible individual and infected individual before virus mutation.Reducing the effective contact rate between susceptible individuals and infected individuals can effectively control the further spread of the disease.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15