基于多注意力机制集成的非侵入式负荷分解算法  被引量:1

Non-intrusive load decomposition model based onmulti-attention mechanism integration

在线阅读下载全文

作  者:王赟 葛泉波 姚刚[1] 王梦梦 姜淏予 WANG Yun;GE Quanbo;YAO Gang;WANG Mengmeng;JIANG Haoyu(Logistics Engineering College,Shanghai Maritime University,Shanghai 201306;School of Automation,Nanjing University of Information Science&Technology,Nanjing 210044;College of Electronic and Information Engineering,Tongji University,Shanghai 201804;College of Electronic and Information Engineering,Guangdong Ocean University,Zhanjiang 524088)

机构地区:[1]上海海事大学物流工程学院,上海201306 [2]南京信息工程大学自动化学院,南京210044 [3]同济大学电子与信息工程学院,上海201804 [4]广东海洋大学电子与信息工程学院,湛江524088

出  处:《南京信息工程大学学报(自然科学版)》2023年第3期304-314,共11页Journal of Nanjing University of Information Science & Technology(Natural Science Edition)

基  金:国家自然科学青年基金(61803136)。

摘  要:针对输入负荷特征对分解结果的重要程度不同,以及长短时记忆网络(LSTM)在捕捉长时间用电信息的时间依赖性方面受限导致分解误差高等问题,提出一种基于多注意力机制集成的非侵入式负荷分解算法.首先,利用概率自注意力机制对一维空洞卷积提取到的负荷特征进行优化处理,实现重要负荷特征的遴选;其次,采用时间模式注意力机制对LSTM的隐状态赋予权重,从而增强网络对长时间用电信息之间的时间依赖性的学习能力;最后,利用公开数据集UKDALE和REDD对所提分解模型的有效性和创新性进行验证.实验结果表明,与其他多种现有分解算法相比,基于多注意力机制集成的分解算法不仅具备更好的负荷特征遴选能力,而且能更加精确地建立特征之间的时间依赖关系,有效降低了分解误差.In view of the different importance of input load characteristics to the decomposition results and the high decomposition error caused by the limited time dependence of LSTM in capturing long-term power consumption information,a non-intrusive load decomposition model based on multi-attention mechanism integration is proposed.First,the probsparse self-attention mechanism is used to optimize the load characteristics extracted by one-dimensional dilated convolution.Then,the temporal pattern attention mechanism is used to give weight to the hidden state of LSTM,so as to enhance the learning ability of the network on the time dependence of long-term power consumption information.Finally,the validity of the proposed decomposition model is verified using the publicly available dataset UKDALE and REDD.Experimental results show that,compared with other decomposition algorithms,the proposed decomposition model based on multi-attention mechanism integration not only has the ability to select important load features,but also can correctly establish the time-dependent relationship between features and effectively reduce the decomposition error.

关 键 词:负荷分解 注意力机制 卷积神经网络 长短时记忆网络 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象