检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Doaa Sami Khafaga Maheshwari Auvdaiappan KDeepa Mohamed Abouhawwash Faten Khalid Karim
机构地区:[1]Department of Computer Sciences,College of Computer and Information Sciences,Princess Nourah bint Abdulrahman University,P.O.Box 84428,Riyadh,11671,Saudi Arabia [2]Department of Computational Intelligence,SRM Institute of Science and Technology,Kattankulathur,Chennai,603203,India [3]Department of Computer Science and Engineering,M.Kumarasamy College of Engineering,Karur,639113,India [4]Department of Mathematics,Faculty of Science,Mansoura University,Mansoura,35516,Egypt [5]Department of Computational Mathematics,Science,and Engineering(CMSE),College of Engineering,Michigan State University,East Lansing,MI,48824,USA
出 处:《Intelligent Automation & Soft Computing》2023年第5期1301-1313,共13页智能自动化与软计算(英文)
基 金:funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R300),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
摘 要:Today social media became a communication line among people to share their happiness,sadness,and anger with their end-users.It is necessary to know people’s emotions are very important to identify depressed people from their messages.Early depression detection helps to save people’s lives and other dangerous mental diseases.There are many intelligent algorithms for predicting depression with high accuracy,but they lack the definition of such cases.Several machine learning methods help to identify depressed people.But the accuracy of existing methods was not satisfactory.To overcome this issue,the deep learning method is used in the proposed method for depression detection.In this paper,a novel Deep Learning Multi-Aspect Depression Detection with Hierarchical Atten-tion Network(MDHAN)is used for classifying the depression data.Initially,the Twitter data was preprocessed by tokenization,punctuation mark removal,stop word removal,stemming,and lemmatization.The Adaptive Particle and grey Wolf optimization methods are used for feature selection.The MDHAN classifies the Twitter data and predicts the depressed and non-depressed users.Finally,the proposed method is compared with existing methods such as Convolutional Neur-al Network(CNN),Support Vector Machine(SVM),Minimum Description Length(MDL),and MDHAN.The suggested MDH-PWO architecture gains 99.86%accuracy,more significant than frequency-based deep learning models,with a lower false-positive rate.The experimental result shows that the proposed method achieves better accuracy,precision,recall,and F1-measure.It also mini-mizes the execution time.
关 键 词:Depression detection twitter data tweets deep learning swarm intelligence multi-aspect depression detection prediction
分 类 号:R749.4[医药卫生—神经病学与精神病学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28