Multi Class Brain Cancer Prediction System Empowered with BRISK Descriptor  

在线阅读下载全文

作  者:Madona B.Sahaai G.R.Jothilakshmi E.Praveen V.Hemath Kumar 

机构地区:[1]Department of Electronics and Communication Engineering,VISTAS,Chennai,Tamil Nadu,India

出  处:《Intelligent Automation & Soft Computing》2023年第5期1507-1521,共15页智能自动化与软计算(英文)

摘  要:Magnetic Resonance Imaging(MRI)is one of the important resources for identifying abnormalities in the human brain.This work proposes an effective Multi-Class Classification(MCC)system using Binary Robust Invariant Scalable Keypoints(BRISK)as texture descriptors for effective classification.Atfirst,the potential Region Of Interests(ROIs)are detected using features from the acceler-ated segment test algorithm.Then,non-maxima suppression is employed in scale space based on the information in the ROIs.The discriminating power of BRISK is examined using three machine learning classifiers such as k-Nearest Neighbour(kNN),Support Vector Machine(SVM)and Random Forest(RF).An MCC sys-tem is developed which classifies the MRI images into normal,glioma,meningio-ma and pituitary.A total of 3264 MRI brain images are employed in this study to evaluate the proposed MCC system.Results show that the average accuracy of the proposed MCC-RF based system is 99.62%with a sensitivity of 99.16%and spe-cificity of 99.75%.The average accuracy of the MCC-kNN system is 93.65%and 97.59%by the MCC-SVM based system.

关 键 词:Braincancer BRISKdescriptor randomforest multi-classclassification brain image analysis 

分 类 号:R739.41[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象