检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Neenavath Veeraiah Youseef Alotaibi Ahmad FSubahi
机构地区:[1]Department of Electronics and Communications,DVR&DHS MIC Engineering College,Kanchikacharla,A.P.,521180,India [2]Department of Computer Science,College of Computer and Information Systems,Umm Al-Qura University,Makkah,21955,Saudi Arabia [3]Department of Computer Science,University College of Al Jamoum,Umm Al-Qura University,Makkah,21421,Saudi Arabia
出 处:《Computer Systems Science & Engineering》2023年第8期1879-1900,共22页计算机系统科学与工程(英文)
基 金:This research is funded by the Deanship of Scientific Research at Umm Al-Qura University,Grant Code:22UQU4281768DSR01.
摘 要:An abnormality that develops in white blood cells is called leukemia.The diagnosis of leukemia is made possible by microscopic investigation of the smear in the periphery.Prior training is necessary to complete the morphological examination of the blood smear for leukemia diagnosis.This paper proposes a Histogram Threshold Segmentation Classifier(HTsC)for a decision support system.The proposed HTsC is evaluated based on the color and brightness variation in the dataset of blood smear images.Arithmetic operations are used to crop the nucleus based on automated approximation.White Blood Cell(WBC)segmentation is calculated using the active contour model to determine the contrast between image regions using the color transfer approach.Through entropy-adaptive mask generation,WBCs accurately detect the circularity region for identification of the nucleus.The proposed HTsC addressed the cytoplasm region based on variations in size and shape concerning addition and rotation operations.Variation in WBC imaging characteristics depends on the cytoplasmic and nuclear regions.The computation of the variation between image features in the cytoplasm and nuclei regions of the WBCs is used to classify blood smear images.The classification of the blood smear is performed with conventional machine-learning techniques integrated with the features of the deep-learning regression classifier.The designed HTsC classifier comprises the binary classifier with the classification of the lymphocytes,monocytes,neutrophils,eosinophils,and abnormalities in the WBCs.The proposed HTsC identifies the abnormal activity in the WBC,considering the color and shape features.It exhibits a higher classification accuracy value of 99.6%when combined with the other classifiers.The comparative analysis expressed that the proposed HTsC model exhibits an overall accuracy value of 98%,which is approximately 3%–12%higher than the conventional technique.
关 键 词:White blood cells LEUKEMIA SEGMENTATION HISTOGRAM blood smear
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.150.214