Deep Learning Framework for the Prediction of Childhood Medulloblastoma  

在线阅读下载全文

作  者:M.Muthalakshmi T.Merlin Inbamalar C.Chandravathi K.Saravanan 

机构地区:[1]Department of Biomedical Engineering,Veltech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology,Chennai,Tamil Nadu,India [2]Department of Electronics and Instrumentation Engineering,Saveetha Engineering College,Chennai,Tamil Nadu,India [3]Department of Information Technology,J.J.College of Engineering and Technology,Trichy,Tamil Nadu,India [4]Department of Information Technology,R.M.D Engineering College,Kavaraipettai,Chennai,Tamil Nadu,India

出  处:《Computer Systems Science & Engineering》2023年第7期735-747,共13页计算机系统科学与工程(英文)

摘  要:This research work develops new and better prognostic markers for predicting Childhood MedulloBlastoma(CMB)using a well-defined deep learning architecture.A deep learning architecture could be designed using ideas from image processing and neural networks to predict CMB using histopathological images.First,a convolution process transforms the histopathological image into deep features that uniquely describe it using different two-dimensional filters of various sizes.A 10-layer deep learning architecture is designed to extract deep features.The introduction of pooling layers in the architecture reduces the feature dimension.The extracted and dimension-reduced deep features from the arrangement of convolution layers and pooling layers are used to classify histopathological images using a neural network classifier.The performance of the CMB classification system is evaluated using 1414(10×magnification)and 1071(100×magnification)augmented histopathological images with five classes of CMB such as desmoplastic,nodular,large cell,classic,and normal.Experimental results show that the average classification accuracy of 99.38%(10×)and 99.07%(100×)is attained by the proposed CNB classification system.

关 键 词:Brain tumour childhood medulloblastoma deep learning histopathological images medical image analysis 

分 类 号:R73[医药卫生—肿瘤] TP3[医药卫生—临床医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象