Music Genre Classification Using African Buffalo Optimization  

在线阅读下载全文

作  者:B.Jaishankar Raghunathan Anitha Finney Daniel Shadrach M.Sivarathinabala V.Balamurugan 

机构地区:[1]KPR Institute of Engineering and Technology,Coimbatore,641407,India [2]Government Engineering College,Palakkad,678633,India [3]Velammal Institute of Technology,Chennai,601204,India [4]Sathyabama Institute of Science and Technology,Chennai,600119,India

出  处:《Computer Systems Science & Engineering》2023年第2期1823-1836,共14页计算机系统科学与工程(英文)

摘  要:In the discipline of Music Information Retrieval(MIR),categorizing musicfiles according to their genre is a difficult process.Music genre classifica-tion is an important multimedia research domain for classification of music data-bases.In the proposed method music genre classification using features obtained from audio data is proposed.The classification is done using features extracted from the audio data of popular online repository namely GTZAN,ISMIR 2004 and Latin Music Dataset(LMD).The features highlight the differences between different musical styles.In the proposed method,feature selection is per-formed using an African Buffalo Optimization(ABO),and the resulting features are employed to classify the audio using Back Propagation Neural Networks(BPNN),Support Vector Machine(SVM),Naïve Bayes,decision tree and kNN classifiers.Performance evaluation reveals that,ABO based feature selection strategy achieves an average accuracy of 82%with mean square error(MSE)of 0.003 when used with neural network classifier.

关 键 词:GENRE african buffalo optimization neural network SVM audio data MUSIC 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象