检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Fuyun Zhu Guoqing Wu
机构地区:[1]College of Mechanical and Electrical Engineering,Soochow University,Suzhou,215137,China
出 处:《Energy Engineering》2021年第6期1703-1712,共10页能源工程(英文)
基 金:supported by National Natural Science Foundation of China(Grant 61273151).
摘 要:Accurate power load forecasting plays an important role in the power dispatching and security of grid.In this paper,a mathematical model for power load forecasting based on the random forest regression(RFR)was established.The input parameters of RFR model were determined by means of the grid search algorithm.The prediction results for this model were compared with those for several other common machine learning methods.It was found that the coefficient of determination(R^(2))of test set based on the RFR model was the highest,reaching 0.514 while the corresponding mean absolute error(MAE)and the mean squared error(MSE)were the lowest.Besides,the impacts of the air conditioning system used in summer on the power load were discussed.The calculation results showed that the introduction of indexes in the field of Heating,Ventilation and Air Conditioning(HVAC)could improve the prediction accuracy of test set.
关 键 词:Mathematical model machine learning power load HVAC
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222