基于改进粒子群算法的剪切散斑相位图去噪方法  

Shear Speckle Phase Pattern Denoising Method Based on Improved Particle Swarm Optimization Algorithm

在线阅读下载全文

作  者:王森瑶 刘吉[1] 武锦辉[1] 刘贵香 凌秀兰[1] 于丽霞[1] WANG Senyao;LIU Ji;WU Jinhui;LIU Guixiang;LING Xiulan;YU Lixia(School of Information and Communication Engineering,North University of China,Taiyuan 030051,China)

机构地区:[1]中北大学信息与通信工程学院,山西太原030051

出  处:《测控技术》2023年第6期78-83,共6页Measurement & Control Technology

基  金:山西省基础研究计划项目(202103021224188,202203021211087)。

摘  要:空间相移剪切散斑干涉技术具有全场、非接触、高灵敏度等特点,是动态无损检测的关键技术。针对瞬态剪切散斑干涉获得的高噪声相位条纹图中噪声强度大、条纹复杂等情况,常规粒子群优化算法在高噪声相位图像的去噪处理中存在处理不完整、无法较好保持条纹细节等问题,因此提出一种基于优化粒子群算法的剪切散斑相位图去噪方法。该方法在常规粒子群优化算法的基础上,改进了传统线性惯性权值调整方法,提出非线性权值分配方法,同时通过调整聚集度系数提高了算法局部搜索能力。实验结果表明,该方法能够有效地保护条纹的边缘纹理和相位信息,与常规粒子群优化算法相比速度提高了15%,相位奇异点数减少了21.3%,与其他现有方法相比,所提出的算法的去噪效果更好。Spatial phase-shifted shear speckle interferometry is a key technology of dynamic nondestructive testing,which has the characteristics of full-field,noncontact and high sensitivity.In view of the large noise inten-sity and complex fringe in the high noise phase fringe pattern obtained by the transient shear speckle interfer-ometry,the conventional particle swarm optimization(PSO)algorithm has some problems in the denoising pro-cessing of the high noise phase image,such as incomplete processing and unable to better maintain the fringe details.Therefore,a shear speckle phase pattern denoising method based on the improved PSO algorithm is pro-posed.Based on the conventional PSO algorithm,the traditional linear inertia weight adjustment method is improved,a nonlinear weight allocation method is proposed,and the local search ability of the algorithm is im-proved by adjusting the aggregation coefficient.The experimental results show that the proposed method can effectively protect the edge texture and phase information of the fringe.Compared with the conventional PSO algorithm,the speed is increased by 15%and the number of phase singular points is reduced by 21.3%.Compared with other existing methods,the proposed algorithm has better denoising effect.

关 键 词:粒子群优化算法 图像处理 图像去噪 光学测量 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象