检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜晓闯 梁漫春 黎岢 俞彦成 刘欣 汪向伟 王汝栋 张国杰 付起 DU Xiaochuang;LIANG Manchun;LI Ke;YU Yancheng;LIU Xin;WANG Xiangwei;WANG Rudong;ZHANG Guojie;FU Qi(Department of Engineering Physics,Tsinghua University,Beijing 100084,China;Beijing Yongxin Medical Equipment Co.,Ltd.,Beijing 102206,China;No.91515 Unit of PLA,Sanya 572016,China)
机构地区:[1]清华大学工程物理系,北京100084 [2]北京永新医疗设备有限公司,北京102206 [3]中国人民解放军91515部队,三亚572016
出 处:《清华大学学报(自然科学版)》2023年第6期980-986,共7页Journal of Tsinghua University(Science and Technology)
基 金:国防科工局核设施治理科研项目([2018]1521)。
摘 要:快速、准确的放射性核素识别可有效地对放射性危险源进行及时的监测预警,对保护人们远离放射源的威胁具有重要意义。该文基于卷积神经网络研究了放射性核素γ能谱的识别。通过溴化镧能谱仪采集16种放射性核素的γ能谱数据,并通过改变放射性核素γ能谱的计数和能谱漂移程度,创建生成大量单核素和双核素γ能谱训练数据,利用自搭建的卷积神经网络开展放射性核素识别模型训练。实验采集其中9种核素及其双核素的混合能谱对核素识别模型开展验证,结果表明:在剂量率约为0.5μSv/h、测量采集时间为60 s时,模型的识别准确率可达92.63%,满足在低剂量率下对放射性核素进行快速识别筛查的需求。[Objective]Rapid and reliable radionuclide identification can enable rapid monitoring and early warning of radioactive sources,which is essential for safeguarding people from the threat of radioactive materials.However,distinctive peak matching algorithms are not suitable for low gross count gamma-ray spectrum identification,especially when there are overlapped peaks in a spectrum.To improve the identification performance for low gross count gamma-ray spectra,this study creates a radionuclide identification model based on convolutional neural networks that can better identify the spectra obtained at low dose rates.[Methods]Firstly,a gamma-ray spectrum dataset was created.The gamma-ray spectra of 16 radionuclides were obtained at a dose rate of about 0.5μSv/h using a LaBr_(3)spectrometer with measuring energy ranging from 30 to 3000keV,a resolution of about 5%at 662 keV,and a measured acquisition time about 100s.Secondly,a training dataset was developed.To train the model,a huge number of gamma-ray spectra of 16 radionuclides and their two mixed radionuclides were generated.We created 1100 data points for each type of gamma-ray spectra by varying the gross count and energy drift.Thus,a total of 149600 gamma-ray spectrum data were generated.Among them,80%of the data were randomly selected for model training and the remaining 20%for model crossvalidation.Finally,the convolutional neural networks was constructed.The random searching approach was used to search hyperparameters of the model using the Keras-Tuner tool for determining the ideal architecture of convolutional neural networks.The convolutional layer filter numbers were 96,128,32,256,and 256 in order.The activation function for convolutional layers was the rectified linear unit.Furthermore,the neuron number of the hidden layer was 480,and the learning rate was 0.0000296.At last,the spectra labels were encoded using the one-hot format,and the softmax function was used as the activation function for the model's output layer.The model parameters were optimized
分 类 号:TL929[核科学技术—核燃料循环与材料]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222