检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡凯 曹春平[1] 孙宇[1] 王禹[1] Hu Kai;Cao Chunping;Sun Yu;Wang Yu(School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)
机构地区:[1]南京理工大学机械工程学院,江苏南京210094
出 处:《锻压技术》2023年第6期124-129,共6页Forging & Stamping Technology
基 金:江苏省科技成果转化专项资金(BA2021067)。
摘 要:为解决高速压力机离合器制动器的故障问题,提出了萤火虫优化BP神经网络故障诊断算法,可防止传统的BP神经网络算法中容易进入局部最优等问题。介绍了一般离合器制动器故障的类型和原因,并分析了萤火虫优化BP神经网络故障诊断算法的基本理论,建立了基于该算法的离合器制动器故障诊断模型。以高速压力机中的离合器制动器为研究对象,采用Matlab进行仿真验证。结果表明:萤火虫算法优化BP神经网络的故障诊断误差明显小于传统BP神经网络和遗传算法优化BP神经网络的误差,故障诊断正确率可达89.167%。In order to solve the fault problem of clutch brake in high speed press,a fault diagnosis algorithm based on firefly optimization BP neural network was proposed,which prevented the problems such as easy entry into local optimum in the traditional BP neural network algorithm.Then,the types and causes of general clutch brake faults were introduced,and the basic theory for fault diagnosis algorithm of firefly optimization BP neural network was analyzed to establish a clutch brake fault diagnosis model based on this algorithm.For the clutch brake in high-speed press,the simulation verification was carried out by Matlab.The results show that the fault diagnosis error of firefly optimization BP neural network is significantly smaller than that of the traditional BP neural network and the genetic algorithm optimization BP neural network,and the correct rate of fault diagnosis reaches 89.167%.
关 键 词:高速压力机 离合器制动器 BP神经网络 萤火虫算法 故障诊断
分 类 号:TH165[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.177