基于Noise2Noise的静电悬浮惯性传感器噪声抑制方法  

Noise suppression method of electrostatic suspension inertial sensor based on Noise2Noise

在线阅读下载全文

作  者:徐鹏 杨智岚[1,2,3,4] XU Peng;YANG Zhian(Hangzhou Institute for Advanced Study,UCAS,School of Fundamental Physics and Mathematical Science,Hangzhou 310024,China;National Space Science Center,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China;Institute of Mechanics,Chinese Academy of Sciences,Center for Gravitational Wave Experiment,Beijing 100190,China;Lanzhou University,Lanzhou Center for Theoretical Physics,Lanzhou 730000,China)

机构地区:[1]国科大杭州高等研究院,基础物理与数学科学学院,杭州310024 [2]中国科学院国家空间科学中心,北京100190 [3]中国科学院大学,北京100049 [4]中国科学院力学研究所,引力波实验中心,北京100190 [5]兰州大学,兰州理论物理中心,兰州730000

出  处:《中国惯性技术学报》2023年第6期611-619,共9页Journal of Chinese Inertial Technology

基  金:国家重点研发计划“引力波探测”重点专项课题(2020YFC2200601,2021YFC2201901)。

摘  要:针对星载静电悬浮惯性传感器噪声复杂,在轨测量数据真值未知,传统方法难以有效抑制的问题,提出了基于无监督学习的Noise2Noise框架,结合集成学习方案,设计了基于Noise2Noise无监督学习的广谱随机噪声抑制方法,并基于GRACE-FO加速度计数据进行了实验验证。实验结果表明所提方法相较于传统噪声抑制方法的噪声均方误差下降8%以上,使用集成学习后,噪声水平进一步下降至12%以上。此外,所提方法在有效抑制高频噪声的同时,能够识别出高频数据中的特征性信号,可为惯性传感器载荷在轨运行状态评估提供信息保障。In view of the noise of onboard electrostatic suspension inertial sensors is complex and difficult to be effectively suppressed by traditional methods when the true value of in-orbit measurement data is unknown,a Noise2Noise framework based on unsupervised learning is proposed.Combined with an integrated learning scheme,a broad spectrum random noise suppression method based on unsupervised learning framework of Noise2Noise is designed,which is verified by experiments based on GRACE-FO accelerometer data.The experimental results show that compared with traditional noise suppression methods,the mean square error of noise of the proposed method is reduced by more than 8%,and the noise level is further reduced by more than 12%after using integrated learning.In addition,the proposed method can effectively suppress the high-frequency noise and identify the characteristic signals in high-frequency data,which can provide information guarantee for the on-orbit operation status evaluation of inertial sensor payloads.

关 键 词:惯性传感器 加速度计 数据处理 Noise2Noise 深度学习 

分 类 号:U666.1[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象