基于细菌觅食算法的主动磁悬浮轴承PID控制优化  被引量:4

Optimization of PID Control of Active Magnetic Bearings Based on Bacterial Foraging Algorithm

在线阅读下载全文

作  者:杨福 高羽[2] 李彬彬[1] 李梦娜 谢堂佳 YANG Fu;GAO Yu;LI Binbin;LI Mengna;XIE Tangjia(School of Electrical Engineering,Shanghai Dianji University,Shanghai 201306,China;Kaiserslautern Intelligent Manufacturing School,Shanghai Dianji University,Shanghai 201306,China)

机构地区:[1]上海电机学院电气学院,上海201306 [2]上海电机学院凯撒斯劳滕智能制造学院,上海201306

出  处:《轴承》2023年第7期20-23,39,共5页Bearing

摘  要:针对磁悬浮轴承系统采用传统PID控制时调节速度慢、超调量大的问题,建立了磁悬浮轴承系统模型并通过细菌觅食优化算法不断迭代优化控制参数K_(p),K_(i),K_(d)。仿真分析结果表明,与传统及粒子群优化PID控制相比,细菌觅食优化PID的超调性能更好,响应速度更快,能满足磁悬浮电动机低振动、高精度的性能要求。Aimed at the problems of slow adjustment speed and large overshoot when traditional PID control is used for active magnetic bearing system,a model of magnetic bearing system is established,and the control parameters K_(p),K_(i) and K_(d) are iteratively optimized by bacterial foraging algorithm.The simulation results show that compared with traditional PID control and PID control based on particle swarm optimization algorithm,the optimization of PID control based on bacterial foraging algorithm has better overshoot performance and faster response speed,meeting the performance requirements of low vibration and high precision of magnetic levitation motor better.

关 键 词:滑动轴承 磁力轴承 PID控制器 细菌觅食 优化 超调量 

分 类 号:TH133.31[机械工程—机械制造及自动化] TB114.2[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象