检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王湛煌 郑波 尚月强 WANG Zhanhuang;ZHENG Bo;SHANG Yueqiang(School of Mathematics and Statistics,Southwest University,Chongqing 400715,China)
出 处:《计算物理》2023年第1期14-28,共15页Chinese Journal of Computational Physics
基 金:重庆市自然科学基金(cstc2021jcyj-msxmX1044)资助项目。
摘 要:使用标准的有限元方法求解非定常Navier-Stokes方程所得速度误差常受压力误差影响,且误差随粘性系数的减少而增大。为了增强压力的鲁棒性,本文引入grad-div稳定项,以提高近似解的精度,提出数值求解非定常Navier-Stokes方程的并行两水平grad-div稳定有限元算法,其时间和空间离散分别采用隐式Euler格式和Galerkin有限元方法。首先在全局粗网格上求解非线性grad-div稳定问题,然后在相互重叠的细网格子区域上并行求解grad-div稳定问题,以校正粗网格解。最后给出数值实验验证理论分析的正确性和算法的有效性。In numerical solution of unsteady Navier-Stokes equations with standard finite element method,errors of computed velocity are usually affected by pressure errors,where smaller viscosity coefficients lead to greater velocity errors.To improve pressurerobustness,in this paper,we introduce a grad-div stabilization term to improve accuracy of approximate solutions.We present parallel two-level grad-div stabilized finite element algorithms for unsteady Navier-Stokes equations,where implicit Euler scheme and Galerkin finite element methods are used for temporal and spatial discretizations,respectively.At each time step,firstly we solve a nonlinear Navier-Stokes problem with grad-div stabilization on a coarse grid,and then linearized and grad-div stabilized problems are solved with Stokes,Oseen and Newton iterations on overlapping fine grid subdomains in a parallel manner to correct the coarse grid solution.Finally,numerical experiments are given to verify correctness of theoretical predictions and demonstrate effectiveness of the algorithms.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.227.49.56