人工智能时代的国家文化安全风险及其规避  被引量:14

National Cultural Security Risks and Their Avoidance in the Age of Artificial Intelligence

在线阅读下载全文

作  者:吴琼 孙程芳 WU Qiong;SUN Cheng-fang(School of Marxism,Beijing Jiaotong University,Beijing 100044,China)

机构地区:[1]北京交通大学马克思主义学院,北京100044

出  处:《南昌大学学报(人文社会科学版)》2023年第3期111-118,共8页Journal of Nanchang University(Humanities and Social Sciences)

基  金:教育部人文社会科学研究规划项目“短视频语境下思想政治教育话语体系建设研究”(22YJA710042);中央高校基本科研业务费专项资金资助“习近平总书记关于国家文化安全的重要论述研究”(2022YJS160)。

摘  要:当今时代,人工智能的勃兴特别是生成式人工智能的横空出世深度影响了人类社会的生存境遇和文化生态。在人工智能技术赋能之下,文化辐射范围得以延展,文化资源能够精准匹配,文化传播权力发生转移,文化安全治理效能极大提升,构建了国家文化安全建设的崭新图景。与此同时,我国文化安全也面临“数字殖民”挑战国家文化主权、“算法黑箱”解构文化价值、“技术魅影”消解文化自信、“智能依赖”制约文化创新等多重风险。因此,必须警惕数字陷阱,增强技术规制,推进科技自立自强,审慎对待智能变革,切实维护好国家文化安全。In today’s era,the rise of artificial intelligence,especially the emergence of generative artificial intelligence,has a profound impact on the survival situation and cultural ecology of human society.With the help of AI technology,the scope of cultural radiation has been extended,cultural resource management can be precisely matched,the power of cultural communication has been transferred,and the effectiveness of cultural security governance has been greatly improved,building a new picture of national cultural security construction.At the same time,China’s cultural security also faces multiple risks such as“digital colonization”challenging national cultural sovereignty,“algorithmic black boxes”deconstructing cultural values,“technological ghosts”dissolving cultural confidence,and“intelligent dependence”constraining cultural innovation.To this end,it is necessary to be vigilant against digital traps,strengthen technological regulations,promote technological self-reliance and self-reliance,prudently approach intelligent changes,and effectively maintain national cultural security.

关 键 词:人工智能 国家文化安全 文化主权 文化自信 文化创新 

分 类 号:G122[文化科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象