检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡喆 池茂儒[1] 周亚波 蔡吴斌 HU Zhe;CHI Maoru;ZHOU Yabo;CAI Wubin(State Key Laboratory of Traction Power,Southwest Jiaotong University,Chengdu 610031,China;School of Mechanical and Electrical Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China)
机构地区:[1]西南交通大学牵引动力国家重点实验室,四川成都610031 [2]电子科技大学机械与电气工程学院,四川成都611731
出 处:《铁道科学与工程学报》2023年第6期2294-2303,共10页Journal of Railway Science and Engineering
基 金:国家自然科学基金区域联合基金资助项目(U21A20168)。
摘 要:由于转向架结构型式及各部件分布的不同,会引起车辆各组成质量存在差异。为了研究铁道车辆簧下、簧间和簧上质量对转向架蛇行运动稳定性的影响规律,推导了考虑Maxwell减振器模型的整车21自由度横向动力学线性微分方程,基于特征根稳定性判据,采用最小阻尼比法求解车辆系统的临界速度。同时结合轮对自激输入能量法和模态能量法,提出一种适用于多自由度铁道车辆轮轨系统的自激输入能量分析方法,利用该方法,进行车辆质量参数对系统自激输入能量的影响研究,自激输入能量越大,表明蛇行运动稳定性越差。最后通过仿真软件SIMPACK建立整车动力学模型,使用渐进稳定性方法求解车辆系统的非线性临界速度,仿真结果验证了最小阻尼比法和多自由度轮轨系统自激输入能量方法的可行性,可以反映车辆参数对蛇行运动稳定性的影响规律。研究结果表明:减小簧下和簧间的质量可以在一定程度上提高车辆稳定性,簧上质量对车辆稳定性的影响不大;若轮对和构架的质量分别增加1000 kg,临界速度将会分别降低19%和9%,自激输入能量将会分别增大91.7%和32%;若轮对和构架的质量分别减小1000 kg,临界速度将会分别提高36%和10.9%,自激输入能量将会分别降低33.8%和21.9%;簧下质量对车辆稳定性的影响程度大于簧间质量。Due to the differences of bogie structure and part arrangement,the component of vehicle’s mass is different.To study the influence of unsprung mass,the mass between primary suspension and secondary suspension and the sprung mass on the hunting stability of railway vehicles,the linear differential equation of the lateral vehicle dynamics model with 21 degree of freedoms was derived,in which the Maxwell model was considered.The critical velocity of the vehicle system was determined using the minimum damping ratio method based on the stability criteria of the eigenvalues.A stability analysis technique based on the self-excited input energy method for the wheel-rail system of multi-degree of freedom railway vehicles was proposed by combining the self-excited input energy method of wheelset hunting motion and the Motion-mode energy method.This technique was utilized to study the influence of vehicle’s mass on the self-excited input energy of the system.The greater the self-excited input energy is,the worse the hunting motion stability is.Finally,the simulation software program SIMPACK®was adopted to solve the nonlinear critical velocity of vehicle system by asymptotical stability method.The accuracy of the minimum damping ratio method and the self-excited input energy method for multi-degree-of-freedom wheel-rail system was verified by the simulation results.The influence of vehicle parameters on hunting motion stability was studied.The results indicate that decreasing the unsprung mass or the mass between primary suspension and secondary suspension can improve partly the vehicle stability,while the sprung mass has a minimum effect on the vehicle stability.When the wheelset and frame mass increased by 1000 kg,the critical velocity would reduce by 19%and 9%,and the self-excited input energy would increase by 91.7%and 32%,respectively.When the wheelset and frame mass reduced by 1000 kg,the critical velocity would improve by 36%and 10.9%,and the self-excited input energy would reduce by 33.8%and 21.9%,respectively.T
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.108.24