混沌SSA优化多重熵阈值的骨料图像自动分割  

Automatic segmentation of aggregate images with MET optimized by chaos SSA

在线阅读下载全文

作  者:王梦菲 王卫星[1] 李理敏[2] WANG Mengfei;WANG Weixing;LI Limin(College of Information,Chang'an University,Xi'an 710064,China;School of Electrical and Electronic Engineering,Wenzhou University,Wenzhou 325035,China)

机构地区:[1]长安大学信息学院,陕西西安710064 [2]温州大学电气与电子工程学院,浙江温州325035

出  处:《光学精密工程》2023年第13期1973-1987,共15页Optics and Precision Engineering

基  金:国家自然科学基金资助项目(No.61170147);国家自然科学重点基金资助项目(No.U1401252);浙江省教育部科研项目(No.Y202146796);浙江省自然科学基金资助项目(No.LTY22F020003);温州中国重大科技创新项目(No.ZG2021029)。

摘  要:多重熵阈值(MET)随阈值个数K的增加其运算时间成倍增长,而相关优化策略的精度与稳定性低,使得分割的骨料图像缺失大量表面粗糙度与边缘等特征信息。为了克服这一问题,提出了一种基于混沌麻雀搜索算法(SSA)优化MET的骨料自动分割模型。为增强SSA的全局优化能力和鲁棒性,在种群位置初始化时加入Logistic混沌映射均匀麻雀分布,并提出扩张参数扩大全局搜索,控距精英变异及时跳出局部停滞,将该算法称为LSSA,可以在不降低收敛速度的情况下提升求解质量。LSSA用于MET参数的自动选取,以Renyi熵、对称交叉熵和Kapur熵作为目标函数,快速确定最佳阈值集。对不同特征的骨料图像进行了分割实验,通过对比6类组合算法与FCM算法,证明了LSSA-MET的有效性,随着K的增加仍然保持着较快的运行速度,即使K=6时,平均分割一张图片也只需1.532 s。其中LSSA-Renyi熵表现最佳,峰值信噪比、结构相似性和特征相似度分别提高了29.92%,10.67%和5.16%,有效地保留了骨料表面纹理和边缘特征,同时达到了精度与速度的最佳平衡。Multiple entropy thresholding(MET)increases exponentially with an increase in the number of thresholds K.Related optimization strategies exhibit low accuracy and stability with the segmented aggre-gate images lacking considerable feature information such as surface roughness and edges.To overcome these problems,an automatic image segmentation model based on a chaotic sparrow search algorithm(SSA)was developed to optimize MET.SSA is a newer intelligent optimization algorithm.To enhance the global optimization capability and robustness of SSA,a logistic map is added to the uniform sparrow distribution at the time of population position initialization,an expansion parameter is applied to expand the global search,and temporal local stagnation is avoided by range-control elite mutation jumps.This algo-rithm is called logistic SSA(LSSA)and can improve the solution quality without reducing convergence speed.LSSA is used for the automatic selection of MET parameters,with the Renyi entropy,symmetric-cross entropy,and Kapur entropy as objective functions to quickly determine the correct thresholds.In this study,image segmentation and algorithm comparison experiments are conducted on aggregate images with different characteristics.The effectiveness of LSSA-MET was demonstrated by comparing six types of combined algorithms with the fuzzy C-means(FCM)algorithm.The proposed algorithm maintains a rela-tively high speed with an increase in K,taking 1.532 s to split an image on average even when K=6.Among the variousm entropies,LSSA-Renyi entropy performed the best,achieving 29.92%,10.67%,and 5.16%accuracy improvements in peak signal-to-noise ratio(PSNR),structural similarity(SSIM),and feature similarity(FSIM),respectively,thereby effectively retaining the aggregate surface texture and edge characteristics while achieving the optimum balance between precision and speed.

关 键 词:图像分割 骨料 多重熵阈值 优化 麻雀搜索算法 LOGISTIC映射 

分 类 号:TP394.1[自动化与计算机技术—计算机应用技术] TH691.9[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象