改进YOLOv7算法在火灾现场行人检测中的应用  被引量:4

Application of improved YOLOv7 algorithm in pedestrian detection at fire sites

在线阅读下载全文

作  者:赵伟[1] 沈乐 徐凯宏[1] ZHAO Wei;SHEN Le;XU Kaihong(College of Computer and Control Engineering,Northeast Forestry University,Harbin 150040,China)

机构地区:[1]东北林业大学计算机与控制工程学院,黑龙江哈尔滨150040

出  处:《传感器与微系统》2023年第7期165-168,共4页Transducer and Microsystem Technologies

基  金:国家自然科学基金资助项目(61975028);黑龙江省重点研发计划资助项目(GZ20210017,GZ20210018)。

摘  要:提出了一种改进的基于YOLOv7的火灾现场行人检测算法。首先,利用自动色阶算法对火灾现场图像进行预处理;然后,采用HorBlock与CSPNet构造HorBc模块,改进YOLOv7网络结构,加强特征提取能力;同时融合CBAM注意力机制,增加行人特征区域学习权重。实验结果表明:在收集的火灾现场行人数据集上平均精度为97.1%,召回率为95.6%,精确率达到了97.6%;相比原始YOLOv7算法,平均精度提升了1.5%,召回率提升了2.4%,精确率提升了1.8%,在实时性上达到了36.7 fps,满足实时性要求。An improved fire scenes pedestrian detection algorithm based on YOLOv7 is proposed.Firstly,automatic color scale algorithm is used to preprocess the fire scene image.Then,in order to enhance the feature extraction capability,YOLOv7 network structure is improved by using HorBc module,which is constructed by combining HorBlock and CSPNet networks.At the same time,fuse CBAM attention mechanism,increase the weight of pedestrian feature area learning.Experimental results show that the average precision(AP)of 97.1%,the recall rate of 95.6%,and the precision of 97.6%are achieved on the collected pedestrian dataset in the fire scene,compared to the original YOLOv7 algorithm,the AP is increased by 1.5%,the recall rate is increased by 2.4%,and the precision is increased by 1.8%.In real-time performance,36.7 fps is achieved,which meets the real-time requirement.

关 键 词:行人检测 YOLOv7 自动色阶 HorBc 卷积块注意模块 

分 类 号:TP394.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象