检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:董泽萍 仇大伟[1] 刘静[1] DONG Zeping;QIU Dawei;LIU Jing(College of Intelligence and Information Engineering,Shandong University of Traditional Chinese Medicine,Jinan 250355,China)
机构地区:[1]山东中医药大学智能与信息工程学院,济南250355
出 处:《计算机工程与应用》2023年第14期39-50,共12页Computer Engineering and Applications
基 金:国家自然科学基金面上项目(82174528,81973981);山东省自然科学基金面上项目(ZR2020MH360);山东中医药大学青年科研创新团队(2020-54-15)。
摘 要:表面肌电技术是人体行为意图分析的重要方式。在深度学习的推动下,表面肌电在人体下肢动作识别预测上取得了很大的进展。然而,肌电信号面临着抗干扰性差、无法直接提取等缺陷,从而给后期的表面肌电下肢体动作研究带来巨大的困难。对近年来国内外学者在表面肌电下肢体动作研究进展总结归纳,从下肢体肌电数据采集、信号处理方式、特征提取发展、训练模型四个方面进行分析。对相关方法的实验结果进行综合比较,并提出归纳总结。最后对当前研究的不足之处进行了总结并提出建议,以期为表面肌电下肢体识别的应用提供更多的理论依据。Surface electromyography is an important way to analyze human behavior intention.Driven by deep learning,surface electromyography has made great progress in human lower limb action recognition and prediction.However,EMG signals face the defects of poor anti-interference and inability to record deep muscles,which brings huge difficulties to the later study of limb movements under surface EMG.This paper summarizes and summarizes the research progress of body movements under surface EMG by scholars at home and abroad in recent years,and analyzes it from four aspects:lower limb EMG data acquisition,signal processing method,feature extraction development,and training model.The experimental results of related methods are compared comprehensively,and relevant conclusions are put forward.Finally,the shortcomings of the current research are summarized and personal opinions are put forward,in order to provide more theoretical basis for the application of limb recognition under surface electromyography.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15