基于改进跟驰模型的混合车辆编队研究  被引量:2

Research on Hybrid Vehicle Formation based on Improved Car-following

在线阅读下载全文

作  者:王树凤[1] 王世皓 王新凯 WANG Shu-feng;WANG Shi-hao;WANG Xin-kai(Shandong University of Science and Technology,Qingdao 266590,China)

机构地区:[1]山东科技大学,青岛市266590

出  处:《公路》2023年第6期289-297,共9页Highway

基  金:山东省自然科学基金资助项目,项目编号ZR2019MF056。

摘  要:现有的车辆编队控制研究多基于全智能网联环境,不适用于智能网联汽车(Connected and Automated Vehicle, CAV)与人工驾驶汽车(Human-Driven Vehicles, HDV)组成的混合交通场景,因此以混合交通环境下CAV和HDV组成的车辆编队为研究对象,引入头车及前车、后方HDV信息,提出一种改进的智能驾驶员模型(Intelligent Driver Model, IDM)。为更贴合驾驶员的操作行为,缓解优化速度模型(Optimal Velocity Model, OVM)受前车影响产生的速度波动,通过引入驾驶员误差,对OVM模型进行改进。为验证模型的有效性,分别对以上改进进行仿真对比分析,结果表明改进后的IDM模型和OVM模型组成的混合车辆编队在速度响应时间、跟驰间距、油耗、安全性、稳定性等性能方面得到明显改善。The existing research on vehicle formation control is mostly based on the fully intelligent networked environment,which is not suitable for the mixed traffic scenario that composed of Connected and Automated Vehicle(CAV)and Human-Driven Vehicles(HDV).Therefore,in the paper,the vehicle formation composed of CAV and HDV in the mixed traffic environment is taken as the research object.An improved Intelligent Driver Model(IDM)is proposed by introducing the acceleration information of the head car and the front car and the rear HDV information.In order to better fit the driver's operation behavior and alleviate the speed fluctuation of the Optimal Velocity Model(OVM)caused by the influence of the preceding vehicle,the OVM model is improved by introducing driver error.To verify the effectiveness of the model,the above improvements are simulated and compared.The results show that the performance of the hybrid vehicle formation composed of the improved IDM model and OVM model is obviously improved in terms of speed response time,following distance,fuel consumption,safety and stability.

关 键 词:交通工程 混合车队 智能网联汽车 跟驰模型 头车信息 后方HDV信息 驾驶员误差 

分 类 号:U491.112[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象