检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马溶基 焦志刚 缪鹏程 陆贝尔 陈华玲 钱永康 陈炳为[1] MA Rong-ji;JIAO Zhi-gang;MIAO Peng-cheng;LU Bei-er;CHEN Hua-ling;QIAN Yong-kang;CHEN Bing-wei(School of Public Health,Southeast University,Nanjing,Jiangsu 210009,China)
出 处:《现代预防医学》2023年第13期2344-2348,2368,共6页Modern Preventive Medicine
摘 要:目的比较随机生存森林模型、梯度提升模型、极限梯度提升模型与Cox比例风险回归模型对生存数据的区分度性能,为生存分析方法的应用提供参考。方法基于基准实验框架,选择SEER数据库、TCGA数据库、R软件包共13个数据集,分别构建三种机器学习模型与Cox模型,以嵌套交叉验证获得Harrell’s C-index作为模型区分度性能评价指标,采用秩和检验比较模型间性能。结果各数据集的C-index主要集中在0.6-0.75之间。单数据集的结果不全相同,各模型C-index差异仅在部分数据集有意义,且没有一致结论;四种方法的性能在所有数据集、高删失率数据集、低删失率数据集等不同组数据集间的C指数差异均无统计学意义。结论在不同场景下的生存数据分析中,三种机器学习模型区分度性能与传统Cox模型相近。Objective To compare the discrimination performance of random survival forest model,gradient boosting model,extreme gradient boosting model,and Cox proportional hazard regression model on survival data,so as to provide reference for the application of survival analysis method.Methods Based on the benchmark experimental framework,thirteen data sets of SEER database,TCGA database and R software package were selected to construct three machine learning models and Cox models respectively.Harrell’s C-index was obtained by nested cross-validation as the model discrimination performance evaluation index,and the rank sum test was used to compare the performance between models.Results The C-index of each data set was mainly between 0.6 and 0.75.The results of single data sets were not the same,the C-index differences of each model were only significant in some data sets,and there was no consistent conclusion.The performance of the four methods had no significant difference in C-index among all data sets,high deletion rate data sets,low deletion rate data sets and other different groups of data sets.Conclusion In the analysis of survival data in different conditions,the discrimination performance of the three machine learning models is similar to that of the traditional Cox model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.160.52