Structure-Preserving Finite-Element Schemes for the Euler-Poisson Equations  

在线阅读下载全文

作  者:Matthias Maier John N.Shadid Ignacio Tomas 

机构地区:[1]Department of Mathematics,Texas A&M University,3368 TAMU,College Station,TX 77843,USA [2]Sandia National Laboratories,P.O.Box 5800,MS 1320,Albuquerque,NM 87185,USA [3]Department of Mathematics and Statistics,University of New Mexico,MSC011115,Albuquerque,NM 87131,USA [4]Department of Mathematics&Statistics,Texas Tech University,2500 Broadway,Lubbock,TX 79409,USA.

出  处:《Communications in Computational Physics》2023年第3期647-691,共45页计算物理通讯(英文)

摘  要:We discuss structure-preserving numerical discretizations for repulsive and attractive Euler-Poisson equations that find applications in fluid-plasma and selfgravitation modeling.The scheme is fully discrete and structure preserving in the sense that it maintains a discrete energy law,as well as hyperbolic invariant domain properties,such as positivity of the density and a minimum principle of the specific entropy.A detailed discussion of algorithmic details is given,as well as proofs of the claimed properties.We present computational experiments corroborating our analytical findings and demonstrating the computational capabilities of the scheme.

关 键 词:Euler-Poisson equations operator splitting invariant domain preservation discrete energy balance. 

分 类 号:O241.8[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象