检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李婷玉 苏宏伟 胡青宁 邢金台 李鹏飞 高俊涛[3] LI Tingyu;SU Hongwei;HU Qingning;XING Jintai;LI Pengfei;GAO Juntao(Survey Design and Information Research Institute,PetroChina Jidong Oilfield Company,Tangshan,Hebei 063004,China;Science and Technology Information Division,PetroChina Jidong Oilfield Company,Tangshan,Hebei 063004,China;School of Computer&Information Technology,Northeast Petroleum University,Daqing,Heilongjiang 163318,China)
机构地区:[1]中国石油冀东油田分公司勘察设计与信息化研究院,河北唐山063004 [2]中国石油冀东油田分公司科技信息处,河北唐山063004 [3]东北石油大学计算机与信息技术学院,黑龙江大庆163318
出 处:《东北石油大学学报》2023年第3期79-88,I0007,共11页Journal of Northeast Petroleum University
基 金:中国石油冀东油田分公司科技攻关项目(JDYT-2020-JS-50311)。
摘 要:在石油数据资产知识图谱融合过程中存在命名规则差异性大、专业性强和特殊语义问题。提出基于图卷积神经网络的石油数据资产知识图谱(KG)实体对齐方法,给定一组预先对齐的实体种子,采用Graph Convolutional Networks(GCNS)网络学习实体结构和属性信息嵌入统一向量空间,计算空间中实体之间距离;在石油数据资产数据集中对两个KGs进行实体对齐实验。结果表明:基于GCN融合实体关系和属性的嵌入模型优于基于实体关系的TransE实体对齐模型,Hits@1最高为16.96%,比TransE实体对齐模型平均提升6.18%。基于图卷积神经网络的融合实体关系、属性和属性值的实体对齐方法适用于石油数据资产知识管理。To deal with the problems of large differences in naming rules,strong professionalism and special semantics in the process of knowledge graph fusion of data assets in the oil field,we proposed a novel approach for KG alignment of data assets in the oil field based on graph convolutional networks(GCNs).Given a set of pre-aligned entity seeds,the GCN network is used to learn the entity structure and attribute information embedded in the unified vector space,and the distance between entities in the space is calculated to obtain the alignment result.The entity alignment experiment is carried out on two knowledge graphs in the petroleum field.The experimental results show that the GCN-based model is superior to the TransE entity alignment model based on the relationship among entities,with a Hits@1 value of 16.96%,which is 6.18%higher than TransE.And the method of entity alignment fusing attributes and attribute values based on graph convolutional neural network is suitable for petroleum data asset knowledge management.
关 键 词:石油数据资产知识图谱 实体对齐 GCN模型 TransE模型 实体嵌入向量 属性嵌入向量 相似度距离
分 类 号:TP391.7[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15