检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]盐城生物工程高等职业技术学校,江苏盐城224000
出 处:《数理化解题研究》2023年第21期2-4,共3页
摘 要:数列的通项公式也是一种函数的解析式,有了数列的通项公式就可以研究其性质,因此确定数列的通项公式,往往是解题的突破口和关键所在.对于非等差数列又非等比数列的通项公式的研究,特别是给出的数列相邻两项或多项是线性关系的题型,往往就需要用到构造数列法,即构造新的等差数列或等比数列,再借助于等差数列和等比数列的通项公式,得出新数列的通项公式.文章结合相关文献和实际教学经验,探讨一些有益的思路和实践成果,并将构造数列法归纳为常见的六类题型,旨在帮助学生更好地掌握职业高中数学中的构造数列法.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.73.179