超声辅助加工系统的刀具状态自感知算法  

Tool state self-sensing algorithm used for ultrasonic assisted machining system

在线阅读下载全文

作  者:桑汉德 陈爽[1] 张家豪 赵夙 李荣和 SANG Hande;CHEN Shuang;ZHANG Jiahao;ZHAO Su;LI Ronghe(School of Mechanical and Electrical Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China;Ningbo Institute of Materials Technology&Engineering,Chinese Academy of Sciences,Ningbo 315200,China)

机构地区:[1]江西理工大学机电工程学院,赣州341000 [2]中国科学院宁波材料技术与工程研究所,宁波315200

出  处:《应用声学》2023年第4期746-755,共10页Journal of Applied Acoustics

基  金:浙江省“尖兵”“领雁”研发攻关计划项目(2022C01114);宁波市3315创新团队超声冲击处理技术与装备项目(Y80929DL04);浙江省自然科学基金项目(LQ22E010011);宁波市自然科学基金项目(202003N4356,2021J221)。

摘  要:超声波振动台内含压电材料,可以拾取切削过程产生的振动信号,实现不借助外部传感器刀具工作状态的自感知。为了从刀具振动信号中获取有效信息,该文提出一种基于经验模态分解的时频域重构算法。首先,采用经验模态分解算法将原始信号分解,得到多个固有模态函数分量和残差分量;其次,计算原始信号与各分量之间的时频域互相关系数;再次,归一化时频域互相关系数作为权重值,将固有模态函数分量和残差进行重构;最后,通过数值仿真和超声辅助加工实验,验证了基于经验模态分解的时频域重构算法的去噪性能,提取了信噪比为5.03 dB的目标信号,从而实现了超声辅助加工系统的自感知功能。Due to containing piezoelectric material,the ultrasonic vibration table can pick up the vibration signal generated by the cutting process,and realize the self-sensing of the working state of the tool without additional sensors.In order to extract the active ingredients from the tool vibration signal,a time and frequency domain reconstruction algorithm based on empirical mode decomposition(TF-EMD)is proposed.Firstly,the original signal is decomposed into multiple intrinsic mode function(IMF)components and the residual by empirical mode decomposition algorithm.Secondly,the cross-correlation coefficients are calculated between the original signal and decomposed results in both time domain and frequency domain.Thirdly,the weighted factors are obtained by normalizing cross-correlation coefficients,and the IMF components and residual are reconstructed through the obtained weighted factors.Finally,numerical simulation and ultrasonic assisted machining experiment are carried out to verify the denoising performance of the TF-EMD algorithm.The signal with a signal-to-noise ratio of 5.03 dB is extracted,thus the self-sensing of the ultrasonic assisted machining system is realized.

关 键 词:超声辅助加工 自感知技术 经验模态分解 互相关系数 时频域权重 

分 类 号:TB559[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象